Chapter 3

Optimal Consumption with

Estimated Earnings Processes
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3.1 Introduction

In the previous chapter, we found that relaxing the assumption of normality dramatically
changes predictive distributions for future earnings. For example, using an AR(1) spec-
ification with random effects and general form for the error, the error distribution was
estimated to be much more heavy-tailed than the normal distribution. In some cases,
the semiparametric estimates of the autoregressive coefficients were much higher than the
estimates under normality. In this chapter we attempt to evaluate the consequences these
differences could have for stylized models of optimal consumption behavior. The goal is to
develop alternative, economically motivated measures for comparing statistical models for
earnings. We will only develop solutions in very simple cases; numerical solutions could
be extended to more realistic situations, although the computations can quickly become
very expensive. In spite of their simplicity, the examples worked out below clearly indicate
that the discrepancy between the parametric and semiparametric approaches to model-
ing earnings dynamics is sizable, when measured by their implications for consumption
smoothing.

We begin in the next section by setting up a stylized consumption problem, in which a
consumer faces uncertainty about future earnings and uses a riskless asset to carry wealth
into future periods and smooth fluctuations in income. Recently there has been renewed
interest in models of optimal consumption because of the possibility that incorporating
liquidity constraints and a precautionary motive for saving leads to theoretical predictions
which track observed behavior fairly well. (Deaton (1991), Carroll (1992), Carroll (1997)).

In addition, consumers with a precautionary motive can exhibit “Keynesian” responses
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to an increase in future taxes, thus breaking Ricardian equivalence (Barsky, Mankiw, and
Zeldes (1986), Kimball and Mankiw (1989)). See Deaton (1992) for an overview of the
literature on consumption.

Before attempting numerical solutions we look at some simple cases, for which closed-
form solutions can be obtained. In the first case, utility has a logarithmic form and
income can be insured against, so that the consumer consumes out of a predetermined
endowment. The second case allows for uninsurable risky income, but assumes that income
in each period is i.i.d., and the consumer has exponential utility. This allows an explicit
expression to be derived for the value function in every period.

Next we bring in autocorrelated earnings, liquidity constraints and general isoelastic
utility. This lets us use risk calculations to make comparisons between different statis-
tical models of earnings. Dynamic programming is used to obtain optimal consumption
policies in a finite horizon model, where the value function in the terminal period could
be interpreted as giving continuation payoffs. We compare optima using the parametric
and semiparametric correlated random effects models for college-educated male heads of
household as the specification for the earnings process. The loss from using the “wrong”
earnings dynamics model is calculated in certainty equivalent terms.

In the second set of numerical exercises, based on the work of Smith (1991), we consider
a limited family of consumption policies, and try to find the best consumption policy within
this restricted class. Looking only at a limited set of “rules of thumb” allows us to deal
with longer horizons quite easily, and also to use predictive distributions that incorporate

parameter uncertainty. In essence, we simply use the predictive draws from the previous
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chapter to perform Monte Carlo integration for expected utilities under a given decision
rule.

The two models for earnings yield noticeably different optimal consumption policies.
This seems to result mainly from the very different autoregressive coefficients estimated
under the two assumptions about the model errors. That the estimated coefficients differ
so greatly is in itself an empirical puzzle, so we reconsider this issue and try to provide an

interpretation based on heuristic large-sample considerations.

3.2 A Stylized Consumption Problem

Consider a consumer who seeks to maximize expected utility:

T—1
E Y B u(e) + BT DVr(zr) | (3.1)
t=1

where Vr gives terminal payoffs, and 1 as cash on hand at period T. The expectation is
with respect to the joint distribution of an earnings sequence (yi,...,yr).

The consumer starts out with cash on hand of zy and also receives income g1 in period
1, giving cash on hand at the beginning of period 1 of 1 = zg+y1. Fort =2,...,T, cash
on hand is given by z; = (1 + p)(z4—1 — ¢t—1) + ys-

Different models for the income process can be interpreted as giving different joint
distributions F'(y,...,yr). Denote the history of earnings at time ¢ by hy = (y1,...,ys)-

The consumer’s problem is to choose a collection of functions
Ct(])t,ht) S §R,

for t = 1,...,T — 1, to maximize expected utility. A natural restriction is to require
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consumption to be nonnegative; if the consumer cannot borrow against future income, we
would also impose the restrictions that ¢; < z;. Let the feasible set for consumption be
given by ¢; € T'(xy, hy).

Under fairly weak assumptions this problem has a solution which can be calculated via
backwards induction. See Herndndez-Lerma and Lassere (1996) for results on existence of
optima in discrete-time dynamic programs. Starting at period T' — 1, we can recursively

define the value functions:

Vilanhn) = max, {u(«:t) 8 [ Ve (4 ) = ) +uenn, ht+1)dF<yt+nht>} (3.2)

At each stage, the maximizing argument ¢; of the right hand side, regarded as a function
of z; and hy, will give the optimal consumption policy. This does not require that the
solution be an interior solution, nor that the consumption policy be differentiable in cash
on hand.

This dynamic programming characterization of the optimum also provides a way to
approximate a many-period model by a model with a shorter horizon, by interpreting the
terminal payoff function Vi as continuation payoffs. For example, Gourinchas and Parker
(1996) use this idea to avoid having to specify preferences for consumption after retirement,
essentially calibrating the continuation payoffs from observed consumption behavior after
retirement. In the next section, we will try to solve some simple consumption problems
using short horizons (7' = 10 and 7' = 3) using numerical methods. Before developing the
numerical solution, we will consider some simplified versions of the consumption model,
for which closed-form solutions are easily obtained, in order to get some intuition for

reasonable choices for the continuation payoffs.
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First consider the case without liquidity constraints, and suppose that u(-) and V;(-)
are concave. We will also assume that there are complete markets in contingent claims,
and let xy denote the price of the uncertain future income stream, regarded as a bundle
of contingent claims. If utility in each period is logarithmic, the analysis of Samuelson

(1969) (see also Ingersoll (1987)) shows that
Vg =148+ + %) log(zr_1) + g,

which has the same form as V. (g is an arbitrary constant.) Taking the limit as & — oo,
this becomes ﬁlog(w) + ¢g. Analogous results can be obtained for a general CRRA
utility function; see Ingersoll (1987). This suggests that if we are going to interpret Vp
as continuation payoffs, and T is small relative to the “true” horizon, we could use the
same function as u, except we would need to scale it up by approximately 1/(1 — 3). For
example, if § = .91, then 1/(1—f) ~ 11. However, in this setting z; should be interpreted
as containing the present value of future earnings, in addition to cash on hand.

If labor income cannot be insured against, it does not seem possible to obtain useful
closed-form expressions with CRRA utility. However, one can use exponential utility,
which exhibits constant absolute risk aversion. The results below are similar to those in
Cantor (1985); there the income process is allowed to be a Gaussian linear process, and
optimal consumption is characterized, although an expression for the value function is
not explicitly derived. See also Caballero (1990), for an analysis in discrete time with an
infinite horizon, and Kimball and Mankiw (1989), for similar results in a continuous time
model.

If we assume that income y; is i.i.d., 8 = 1/(1 + p), and utility takes the exponential
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form

u(c) = Vr(c) = —e™,

then the following result is easy to verify by induction.

Proposition 1 Given the assumptions above, and assuming that the first order conditions
characterize the optima in every period, the value function in period T — k can be written
as

i

Vi g(@rk) = —(1+ R+ R*+ -+ + RF)e” "R+-+FF . B + ¢,

where q is an arbitrary constant and

ay Rk+Rk—1+___+R:—s+1
B= H [E(ei T+R+-+R51 )} 1+ R+ +R ,

s=1

where (1+ R+ + R 1) =1ifs=1and (RF+RF1+...4+ RFt) =Rk jfs=1. y

18 a random variable with the same distribution as y, t=1,...,T.

This characterization does not rule out negative consumption (and with normally dis-
tributed income, no amount of saving can guarantee nonnegative consumption). With
exponential utility, this still leads to a well-defined solution, though clearly this model
should not be taken too literally.

One can then make some further assumptions about the distribution of y; and the other
model parameters in order to see how V; varies in t. For example, suppose income has a
normal distribution with mean p and variance 2. In the college graduates sample used
in the previous chapter, the mean of labor earnings was about $40,000, and the standard

deviation was approximately $18,000. The factor B is straightforward to evaluate using
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standard results on moment-generating functions. We assume that 7' = 40, and use the
previous results to generate value functions and their derivatives at various choices for k.

Figure 3.1 shows the value function for & = 0,3, 10, 20, 37 (setting ¢ = 0 in each case).
We set the coefficient of absolute risk aversion a = 3/50,000, and R = 8 = 1/(1.05). In
the terminal period utility is quite sensitive to changes in wealth when wealth is close to 0.
However, in earlier periods this sensitivity declines markedly, because borrowing against

future (expected) income can be used to correct temporary dips in fortunes.

3.3 Optimal Consumption with Liquidity Constraints

3.3.1 Ten Period Model

The analysis in the previous section does not apply in the case where the consumer is
not allowed to borrow. Then the first-order conditions may not apply, though the value
function characterization of the optimum in equation 3.2 is still appropriate. We can
use equation 3.2 to numerically solve for the optimal consumption rule; moreover we can
employ more realistic specifications for earnings, and compare in a limited way some of the
different approaches to inference for earnings dynamics developed in the previous chapter.
However, computational constraints severely limit the range of models that can be solved
using this method. We will focus on very simple cases, where relatively straightforward
methods can provide answers quickly. More complex models can be handled by direct
extension of the methods explained below.

We will assume that the felicity function u(-) and terminal payoffs V take the CRRA
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form, with coefficient of relative risk aversion -y:

1=y
u
u(c) = e
We also assume that the consumer cannot borrow. Thus I'i(zy, hy) = [0,2¢]. This is

essentially the same as the setup in Deaton (1991), except for the finite horizon.

We first consider a ten-period model, in which the earnings process is given by:
logy; = 10.5 4 .51(log ys_1 — 10.5) + €,

where

ety - - y-1 ~ N(0,.242).

The parameter values of the earnings process were chosen to mimic the distribution of
earnings in the college subsample. In particular, that subsample had a mean log earnings
of 10.5, the estimate (posterior mean) of the autoregressive coefficient in the parametric
correlated random effects (CRE) AR model was 0.51, and the estimated standard deviation
of the error term was 0.24. We are implicitly assuming that the individual-specific intercept
is known and equal to 0; later on in this section we will consider how the optimum would
change if we altered the choice of the intercept.

Because the earnings model is Markov and we are assuming for now that the agent
knows the process generating the data, the only part of the earnings history h; that is
relevant for expected utility at time ¢ is y;. Thus we can write Vi(xy, hy) as Vi(zy, y4); the
state space in each period will be only two-dimensional.

A more realistic model for earnings would incorporate an age profile, rather than

assume earnings to be stationary over the horizon, and the numerical procedures discussed

140



below could be easily modified to incorporate this feature. However, over the relatively
short horizons being considered here, the assumption of stationarity might be reasonable.
Our results turn out to be similar to other work which explicitly models the life-cycle
pattern of earnings.

We set: = (1/1.1) = .91, p = .05, and v = 3. These choices are similar to those in
Deaton (1991) and other recent work on precautionary saving. The terminal period payoff
Vr is specified to be u(zr), where u is the isoelastic felicity function as before.

Numerical methods have been widely used to solve dynamic consumption problems.
Recent work along these lines includes Deaton (1991), Carroll (1997), Hubbard, Skin-
ner, and Zeldes (1994), Hubbard, Skinner, and Zeldes (1995), Engen and Gruber (1995),
Gourichas and Parker (1996), and Cocco, Gomes, and Maenhout (1997).

The computational algorithm proceeds as follows: for t =T - 1,7 —2,...,1

1. Generate a grid of values for z;, 1;.!

2. At each point in this grid, set up a grid of feasible values for ¢;; this should reflect

the liquidity constraints.

!The size of these grids will depend on ¢t. We started by choosing minimum and maximum values for
log(z1) and log(y1) (9.5 to 11.5 in both cases), then working out the corresponding ranges for later periods
to ensure that no extrapolation of the value function would be needed. The step size of the grid was
.1 (in log points) along both dimensions and for all ¢, although it would be straightforward to allow the
step size to vary. To implement the calculations on a computer, it is useful to use data structures that
can aggregate and index grids of different sizes efficiently, such as Matlab’s cell arrays or suitably general
container classes in a language such as C++. There seems to be additional scope to develop new data

types to efficiently perform these recursive calcuations in future applications.
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3. For each possible combination of x;,y;, and c¢;, evaluate the expected utility, as in

the right hand side of equation 3.2:
u(er) + ﬂ/VtH((l +p)(2t — 1) + Y1, Yer1)AF (Yer1|ye)-

4. The expectation in the preceding expression is calculated using Gauss-Legendre
quadrature with ten abscissae.? Except in period T — 1, where interpolation of

Vr is not needed, the value function V;1; is interpolated linearly.

5. The maximizing choice of ¢; within the grid set up previously is saved, along with
the maximized value function V;(x¢, ), and the algorithm proceeds back to period

t—1.

Figure 3.2 shows the optimal consumption policy in period 1, for three values of y;:
$13,360 (in logs, 9.5), $36,320 (10.5), and $89,320 (11.4). These correspond approximately
to the .025, .5, and .975 quantiles of earnings in the college subsample (aggregated over
the 10 years of data) from which the AR parameter estimates were taken. The optimal
policy is to consume all of current wealth up to some “break point,” which depends on
the current draw for y. At the median level of earnings, the break point occurs around

z1 = $33,000. If earnings is at the .975 quantile, then the break point is higher because

%Since the conditional distribution is normal in this case, it would be more natural to use Gauss-
Hermite quadrature. However, the Gauss-Legendre rule seems to give adequate results, and can be used
without modification for the nonnormal conditional densities considered later. In future work we plan
to investigate the use of adaptive quadrature methods, and make use of error bound analysis to ensure

numerical accuracy.
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future earnings are expected to be high, and hence there is less need to store value in case
of low earnings draws.

For comparison, Figure 3.3 shows optimal consumption in period 9. The qualitative
shape is similar to the initial period case; however, the slope is much higher after the
break, so that a higher fraction of wealth is consumed for any values of z;, y;. This is
quite sensible given that all of z7 will simply be consumed, so that any savings carried
forward into the last period only serves to buffer against a low draw for y7.

Figure 3.4 shows Vr, the isoelastic terminal period payoff function, and V7, the value
function in the initial period, for median levels of current income. The dramatic flattening
of the value function which was observed in the exponential utility case with i.i.d. income
and no liquidity constraints (Figure 3.1) is not evident here. The initial period value
function looks much like the terminal period payoffs, although its slope is slightly lower
at small values of z and slightly higher at large values of . The introduction of liquidity
constraints increases marginal utility at low levels of wealth, because a low income draw
cannot easily be smoothed by borrowing. In addition, the impatience of the agent (8 <
1/(1+p)), effectively shortens the relevant horizon of the problem. So the loss in generality
from considering a ten-period problem appears to be relatively small.

We next compute the optimal consumption policy calibrated with the posterior mean
of the semiparametric CRE model. This has an AR coefficient of .75, and a heavy-tailed

error distribution. (We use the same mean of 10.5 as in the parametric model.) The error
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distribution has the countable normal mixture form, with density

ij |/’LJ7 ]

where 3222, p; = 1 and ¢(-|u,0?) denotes a normal density function with mean u and
variance o2. The parameters are set to their posterior means from the analysis in Chapter
2, and we are assuming that the consumer knows this distribution. Figure 3.5 compares
the error distributions used in the parametric and semiparametric specifications for earn-
ings. Figure 3.6 shows the optimal consumption policy in the first period. If current
earnings is around the median, then the optimal consumption policy looks similar to the
optimum under the parametric earnings model. However, if current earnings are high,
then the higher persistence implies that future earnings are higher in expectation. Thus
the consumer can consume more of current cash on hand. If current earnings are low,
future earnings are lower in expectation than under the parametric model, so it is prudent
to save more under the semiparametric model for earnings. The consumer saves some of
cash on hand even when it is between $15,000 and $20,000, whereas under the parametric
earnings model the consumer would consume all of cash on hand in that range.

The preceding discussion suggests that the higher AR coefficient in the semiparamet-
rically calibrated model could be driving the difference in consumption policies. We also
solved the consumption problem under the parametric earnings model, but changing the
AR coefficient to .75. Figure 3.7 shows optimal consumption in this model. This is very
similar to the optimum in the semiparametric model; however, the break point at the high
earnings draw is slightly lower. So much of the difference between the two earnings models

comes from the different AR coefficients, a point we will discuss further below.
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3.3.2 Truncation at Three Periods

If a ten-period model is appropriate, is there much lost by truncating the problem at
even shorter horizons, say three periods? We return to using the earnings model with
an autoregressive coefficient of 0.51 and normally distributed errors. Figure 3.8 shows
the results from the three period model using the original earnings process, where we
set Vp = 2-u. The consumption functions are qualitatively similar to those in Figure
3.2, although the slopes are somewhat higher than in the ten-period case. The analogous
plot using the semiparametric earnings model is given in figure 3.9. Again, the optimal
consumption rule in period 1 has break points similar to the optimum with 7" = 10 (using
the semiparametric earnings model), but the slope of the consumption function above the
break point appears to be higher in the three-period case.

We also consider how the consumption policies change with various modifications of
the parameters of the decision problem. First we set V = 10-u. As Figure 3.10 shows, this
results in break points being lower. The consumer wants to have more wealth available for
consumption in the final period (or to carry forward into later periods, if V7 is interpreted
as continuation payoffs), so consumption in earlier periods must adjust accordingly.

Next we return to using Vp = 2 - u but set 7y (the coefficient of relative risk aversion)
to 15 instead of 3. This is shown in Figure 3.11. The break points for the consumption
function have shifted down. The consumer, being more prudent, saves more of current
cash on hand to guard against low income realizations in future periods. For example,
with a low earnings draw of $13,360, the consumer with v = 3 will consume the first

$20,000 of cash on hand, while the consumer with v = 15 will begin to save some of any
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cash on hand greater than $15,000.

We also try setting the mean for log earnings to 9.5 and 11.5; this is shown in Figures
3.12 and 3.13, respectively. As would be expected from the basic permanent-income model,
an individual with very high permanent earnings will consume more of current wealth,
for any level of current income; an individual with low permanent earnings will tend to

consume less.

3.3.3 Calculating Certainty Equivalents

The results up to now suggest that the difference between the parametric and semiparamet-
ric models is possibly quite large, in the sense that optimal behavior looks quite different
under the two specifications for earnings. On the other hand, it may be that the utility
loss from using the “wrong” earnings model may be rather small. A more theoretically
sound comparison is to ask how much the agent would be willing to pay to use the “right”
model instead of the wrong one.

The same backward induction argument developed for the calculation of optimal con-
sumption can be used to calculate the expected utility associated with an arbitrary con-

sumption rule. Given a consumption rule, a T'—tuple {&(z:,y;),t = 1,...,T}, define

Vr(xr,yr) = Vr(ér(zr,yr))

and recursively define

Vi(ze, y) = u(Ce(we, ye)) + B / Vit (1 + p) (21 — E@e, yr)) + Yot 1, Y1) AF (Yo [ye)-

Then V; will give the overall expected utility associated with the decision rule, given y;
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and 21 = z + y1. Alternatively, taking the expectation of V; over the distribution for y;
gives the expected utility given only initial endowment z.

Given two consumption rules {¢(z¢, y¢),t = 1,...,T} and {é(z¢, ye),t = 1,...,T},
where V; > Vl, the consumer would be willing to pay C'E in period 1 to use ¢ instead of
¢, where C'E solves

A~

Vi(zy — CE,y1) = Vi(z1,91)-

Figure 3.14 shows the V; (at three different values for y;) under the semiparametric
earnings model, along with Vi which incorrectly assumes the normal AR model for earn-
ings. In general, the loss from using the incorrect policy is fairly small, often too small
to measure accurately given the grid size of the numerical solution method. However,
at the highest earnings draw the consumer would be willing to pay a sizable premium
to use the correct consumption policy, because Vi is very flat at medium to high val-
ues of current cash on hand. For example, suppose that y; = exp(11.4) ~ $89,000 and
z1 = exp(10.9) = $54,000. Using the incorrect policy gives Vi = —1.202 x 1079, whereas
as using the correct policy gives V; = —1.152 x 107°. For comparison, using the optimal
policy when z; = exp(10.8) ~ $49,000 gives an expected utility of V; = —1.190 x 107°.
So in this case the consumer should be willing to pay over $5,000 to use the correct policy.
Intuitively, when current income is high, the incorrect consumption policy underestimates
future earnings, and conserves too much of current wealth for consumption in later periods.

Figure 3.15 shows the reverse situation, in which the true model for earnings is the
normal AR model, and we compare the optimal consumption policy to the policy computed

under the semiparametric earning model. The figure shows V; and Vi at the median level
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of current income; other choices for y; give similar results. The extremely large difference
between the two curves suggests that using the wrong consumption rule can be very
costly. For example, if y; = log(10.5), then the expected utility from incorrectly using
the policy computed under the semiparametric earnings model gives an expected utility
of —4.9 x 1079, if cash on hand is z; = $89,000. Using the optimal consumption rule,
expected utility is —4.6 x 10~ when z; = $15,000. So in this situation the consumer would
be willing to pay over $74,000 to use the correct decision rule over the ten periods. Here,
using the wrong model leads the consumer to smooth consumption too little; combined
with liquidity constraints, this means that the consumer can have very low consumption
in some periods. Since utility is unboundedly negative as consumption approaches 0, this
seems to result in a huge loss from using the incorrect earnings model.

We have obtained similar results if the consumer uses the policy calculated under a
normal model with incorrect AR coefficient .75, when the correct AR coefficient is .51.
This suggests that overestimating the AR coefficient is much worse than underestimating
it, if the parameter estimates are going to be used to formulate policies for consumption

smoothing.

3.4 Evaluating rules of thumb

We now wish to consider the case with parameter uncertainty. Even under the simple
normal AR model y|h;—1 ~ N(a + pyi_1,0?), if the model parameters § = (o, p, o) are

unknown, then the correct predictive distribution, taking into account parameter uncer-
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tainty, has density

T
fnseeovr) = [T o+ oy 1,0%)aP()
t=1
Here ¢(:|u, s) refers to the density of a normal random variable with mean 4 and variance
s, and P(0) is the probability measure of 6, which could be a posterior distribution if we
are implicitly conditioning on past data.

This joint distribution for y will not be first-order Markov, or even stationary. Hence
the dimensionality of the state space will explode as the horizon increases, and for even
moderate values of T' the approach taken in the previous section will not be computation-
ally feasible. Therefore a different strategy is needed.

One approach is to look for the best consumption policy {é(z¢, he) : t = 1,...,T}
within a restricted class. Given the relatively simple form of the optimal consumption

” may be fairly close to

functions we found in the previous analysis, such “rules of thum
optimal. This approach is developed in Smith (1991), who gives conditions under which
such an approximation to the optimal policy can be made arbitrarily precise as the class
of policy functions is made progressively larger. In addition, he shows in a numerical
example that even relatively simple classes of functions can do quite well in practice.

The results of the previous section, as well as other work on optimal consumption
under liquidity constraints, appear to suggest that a relatively simple function might be
adequate. (See for example the plots in Deaton (1991).) We start with the following
function:

é(zya1,a2) =z + 1z > a1)(ag — 1)(z — a1).

This has consumption equal to cash on hand up to a;. If cash on hand is greater than a1,
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then consumption increases only by ay € [0,1] for each additional unit of cash on hand.
There is no dependence on time, or current income realization, at this point.
For a given choice of a1,a2, and a set of Monte Carlo draws for (yi,...,yr), the

expected utility associated with the consumption policy function can be evaluated quite

easily. Let ygj ), . ,yéf ) denote the j-th Monte Carlo draw for the future earnings sequence.

() ()

Form z{"’ = z¢ 4+ y;’’, and for t = 2,..., T, recursively calculate

29 = (14 p) (@, — &= a1, a2)) + v

() () 4

Then the utility associate with policy &(-;a1,a2) and earnings sequence y;”’, ..., yp
given by
T—1
B u(e(ats ar,a9)) + BT V(2.
t=1

The preceding expression can be averaged over the entire set of Monte Carlo draws j =
1,...,J to obtain an approximate expected utility associated with é(-; a1, a2). Hence one
can look for “optimal” choices for a1 and ay under different distributions for earnings.

We evaluated the expected utility on a grid of values for a; and as. After some
experimentation with wider ranges to narrow the size of the grids, we used a grid which
ran from 10,000 to 40,000 in steps of 500 for a; and a grid which ran from 0 to .5 in steps
of .025 for ay. We set § = 1/(1.1), v = 3, and p = .05 as in the previous section. The
initial cash-on-hand was set to $5,000, and we set y; = exp(10.5).

Under the parametric normal model with no parameter uncertainty, the best function
over this grid has a; = 33,000, and as = 0.3500. The expected utility from this policy

is EU = —2.55 x 107?. The shape of the consumption function is similar to the period
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1 optimum in Figure 3.2. The certainty equivalent loss relative to the exact optimum is
difficult to measure precisely, because of the discreteness of the grid used in the calculations
of the exact optima, but using log-linear interpolation suggests that the loss is under
$1,300. This is fairly small given how much we have restricted the class of possible decision
rules.

We then considered generating draws for earnings from the semiparametric AR model,
again with no parameter uncertainty. The initial condition, however, was drawn from
the stationary distribution under the parametric model for simplicity. This resulted in
a “best” policy of a1 = 22,500, ag = 0.4250, with an associated expected utility of
EU = —3.43 x 107°. The break point occurs earlier than in the parametric case. The
expected utility is lower, as one would expect from a more persistent income process in
which buffering is less effective.

We then allow for parameter uncertainty in the parametric AR model. As in the
previous two cases, we assume y; = exp(10.5). Draws for ys,...,y10 were generated
using the draws for p and ¢ from the posterior distribution in the parametric CRE model
estimated on the college graduates subsample. (The appendix to Chapter 2 describes
the construction of the predictive draws in both the parametric and semiparametric CRE
models.) As in the previous two cases, the intercept term of the AR model was chosen so
that the process (in logs) would have stationary mean of 10.5 given the draw for p.

The best choices for the consumption policy parameters were a; = 33,500 and ay =
0.3250, very similar to the parametric model with no parameter uncertainty. The expected

utility under this policy function was —2.55 x 107?. The certainty equivalent loss from
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using the policy calculated without parameter uncertainty is essentially zero. So here
the incorporation of parameter uncertainty into the predictive distributions makes little
difference, given this class of functions. In the case of the semiparametric model, adding
parameter uncertainty changes the best policy rule, but the differences are still fairly
small. The best choices for ai,as were (24,500,0.4500), which gave an expected utility
of —2.64 x 107°. The certainty equivalent loss from using the rule calculated without
parameter uncertainty (with a1 = 22,500 and ags = 0.425) is less than $1,100.

Next we allow the consumption rule to depend on the most recent draw for earnings.
We set

a; = by + by log(y),

since the break points in the exact optima calculated in the previous section seem to move
nearly linearly in the log of first period income. Using the parametric AR model, with no
parameter uncertainty, the optimal policy has b; = 33,000, by = 0, and a2 = .35. This
decision rule is plotted, for three values of current income (log(y) = 9.5, log(y) = 10.5,
and log(y) = 11.4), in the upper left plot in Figure 3.16. This is exactly the same as the
optimum in the previous set of experiments, where by is restricted to be zero from the
outset.

Under the semiparametric model, with no parameter uncertainty, the selected decision
rule is also insensitive to current income; it has b, = 17,000, by = 550, and as = 0.425. So
the break point is slightly lower than in the parametric case, and there is some sensitivity
to current income, although it is quite small. This is shown in the upper right portion of

Figure 3.16. When the predictive distribution (taking into account parameter uncertainty)
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from the parametric earnings model is used to evalute the decision rules, the selected rule
is similar to the rule selected in the first case-the parametric model with no parameter
uncertainty. It has by = 32,500, by = 100, and as = 0.325. This is shown in the lower left
plot in Figure 3.16. Likewise, introducing parameter uncertainty to the semiparametric
specification for earnings gives a decision rule with b; = 23,500, bs = 400, and as = 0.425,
again similar to the case without parameter uncertainty, although the break point does
occur at a noticeably higher level of cash on hand. This is shown in the lower right plot
in Figure 3.16.

The insensitivity of the decision rule to current income is puzzling. This could be an
artifact of the relatively inflexible parameterization, which restricts the break point to be
linear in the log of current income.

There seems to be an excessive amount of Monte Carlo error in these results as they
are currently calculated. The expected utility surface turns out to have ridges along which
rules which appear to be quite different can be nearly equivalent in terms of payoffs, so that
repeating the exercise with a new set of draws can give different results. The distinctions

between rules of thumb made above should therefore be taken as preliminary.

3.5 Reexamining the Correlated Random Effects Models

Many of the results of the previous sections seemed to be largely driven by the different
estimates for the autoregressive coefficient in the parametric and semiparametric models.
In this section we try to interpret this result from the point of view of model selection.

Suppose that the true data-generating process (DGP) is equal to the correlated random
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effects model with normal errors, for some choice of parameter values. Then we would
expect the estimate of the AR coefficient under the parametric model to be reasonably
accurate; in particular it will converge in probability to the true value as n (the number
of individuals in the data set) becomes large, holding T fixed. We would also expect
the semiparametric model to do well, since it essentially nests the parametric model as
a special case. To verify this latter point, we generated a single artificial data set using
the parametric CRE model as the DGP. The parameter values were set to be equal to
the posterior means from the estimates using the college graduates subsample, and the
sample size and initial conditions (y;; for i = 1,...,n) were set equal to their values in the
college graduates subsample. So the autoregressive coefficient in the DGP was set to 0.51.
Using the semiparametric CRE model, with the same prior distribution as in the previous
chapter, gave a posterior mean (standard deviation) for the autoregressive coefficient of
0.54 (0.04), reasonably close to the true value used in the DGP. Also, inference using the
parametric model on the same data set gave exactly the same results for the autoregressive
coefficient.

What if the DGP was a member of the semiparametric CRE family, but not a member
of the parametric CRE family? We would expect inference using the semiparametric
CRE model to work reasonably well.? Using the parametric model would give consistent

estimates of p, even though it is misspecified, since the parametric model, being based

3However, it is difficult to make this statement more precise. In particular, large-sample properties of
the semiparametric models under consideration appear to be limited to arguments which hold for a set of
parameter values of prior measure 1. The particular parameter value associated with the “true” DGP is

not generally guaranteed to be in this set.
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on normality, would only use the first two moments of the data to estimate p, and both
the parametric and semiparametric models have the same implications for the first two
moments of the data for any given value of the autoregressive coefficient.

To verify this, we generated an artificial college graduates data set, using the posterior
means from the semiparametric CRE model. Thus the “true” autoregressive coefficient
was 0.75. The posterior mean for the AR coeflicient, based on the parametric likelihood,
was .78, with a standard deviation of 0.04.

This suggests that what is happening is that both models are misspecified. We begin
by using the “error components” model of the previous chapter, in which income is the

sum of a persistent autoregressive process and white noise:
Yit = Vit T €it,
Vit = PV t—1 + Wit,

Vi1 ~ N(Oa 0121)5 Wit ~ N(an'?u), Yi ~ N(OanZy)

First, we consider the parametric version of this model, in which all innovation terms are

assumed to be normally distributed:
et ~ N(0,02).

We generate an artificial data set based on the parametric estimates for college graduates,
setting p = .92, o, = .17, 0, = .42, and ¢ = .16. Then we ran both the parametric and
semiparametric CRE routines on this data. The results are essentially the same: using the

parametric CRE model the posterior mean (standard deviation) for the AR coefficient is
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0.56 (0.04); using the semiparametric CRE model the posterior mean (standard deviation)
is 0.56 (0.04).

Next, suppose that instead of normally distributed error terms, all the innovations
(vi1, wit, and €;;) were generated by a heavy-tailed distribution. We used ¢ distributions
with 3 degrees of freedom, scaled to have the same standard deviations as in the normal
case. Using the same data set, the estimate from the parametric model was 0.56 (0.04),
while the estimate from the semiparametric model was 0.59 (0.04). So the large difference
between the estimates using the actual PSID data on college graduates remains puzzling.

We could have used other, more complicated specifications for earnings in the con-
sumption applications considered in this chapter. Calculation of the optima using dynamic
programming methods would become harder, because the state space would be larger, but
the same basic ideas discussed in the previous sections would still apply. Still, practically
any feasible statistical model for earnings dynamics would likely be imperfect. So the pos-
sibility of model misspecification would still need to be taken seriously, and introducing
explicit, if stylized, utility calculations can bring some clarity to these issues. For more on
the connections between model choice and decision theory, see Chamberlain (1998) and

Bernardo and Smith (1994), Ch. 6.

3.6 Conclusion

Recent work on optimal consumption has calibrated earnings dynamics in a variety of
ways, but approach has been essentially atheoretical: point estimates are obtained using

conventional loss functions, and when there is a question as to which model for earnings
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is “best,” the choice has often been made informally, or by appealing to generic statistical
criteria rather than by focusing on how the models might be used.

This chapter has used simplified optimal consumption programs, combined with es-
timates based on the college graduates subsample of the PSID, to provide economically
interpretable measures of the differences between the conventional parametric approach
to inference in dynamic panel data models, and the semiparametric Bayesian approach
developed in the previous chapter. The ultimate goal, only partly realized in the analysis
here, is to view econometric model choice as a formal decision problem, with loss functions
based on economic rather than ad hoc statistical considerations. For example, we have
found that in formulating consumption plans, overestimating the persistence of earnings
is much worse than underestimating it. This suggests that working with symmetric loss
functions, as much applied econometric analysis implicitly does, may not be appropriate,
at least when there is enough parameter uncertainty. More generally, the semiparametric
model for earnings leads to quite different consumption-smoothing policies than the para-
metric model, whether measured by the shape of the implied consumption functions, or
in certainty equivalent terms. However, much of this difference comes from very differ-
ent estimates of the autoregressive coefficient, which in turn raises the issue of why the
estimates should be so different.

We also found that the “rule of thumb” approach was difficult to implement in practice,
because unsuitable parameterizations of the decision rule could give results quite far from
the unconstrained optimum. Further work is needed to see if generalizing the class of

decision rules under consideration could give more useful results.
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So the question of how best to deal with parameter uncertainty in complex dynamic
programs remains open. An alternative approach, which we plan to consider in future
research, is to look for approximate sufficient statistics for the earnings process, which
could be used to reduce the dimensionality of the state space. This idea was discussed and
used in Barberis (1996) in a model of portfolio choice. One could base these approximations
on related models that have usable sufficient statistics (e.g. many linear Gaussian models).

While outside the scope of this study, there are many issues in the modeling of observed
consumption behavior that remain open, and for which good modeling of individual earn-
ings risk could be relevant. For example, relatively little of the recent work on optimizing
models of consumption directly addresses the issue of when and how liquidity constraints
might arise, and which individuals can be expected to be liquidity constrained in this
manner. Clearly the model with liquidity constraints we considered above cannot apply
to all consumers in a general equilibrium setting. Empirical work, such as Zeldes (1989),
has tried to determine which consumers behave as if they were liquidity constrained, but
more could be done to extend consumption models like those considered in this chapter,

by explicitly incorporating contracting in order to endogenize liquidity constraints.
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Figure 3.1: Value Functions, Exponential Utility
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Figure 3.2: Normal AR Model, 10 Periods
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Figure 3.3: Normal AR Model, 10 Periods
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Figure 3.4: Value Functions, Normal AR Model, 10 Periods
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Figure 3.6: Semiparametric AR Model, 10 Periods
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Figure 3.7: Normal AR Model with AR Coeflicient = .75
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Figure 3.8: Normal AR Model, 3 Periods

x 10* Optimal Consumption in Period 1, 3 Period Model
T T T T T

1
T
I

IS
T
I

Cash on Hand x 10°

Figure 3.9: Semiparametric AR Model, 3 Periods
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Figure 3.10: Normal AR Model, 3 Periods, Different Vi
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Figure 3.12: Normal AR Model, 3 Periods, E(logy) = 9.5
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Figure 3.13: Normal AR Model, 3 Periods, E(logy) = 11.5
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Figure 3.14: V; and V;, Semiparametric AR Earnings Model
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Figure 3.15: V; and V;, Normal AR Earnings Model
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