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Abstract

In certain auction, search, and related models, the boundary of the support of the observed data

depends on some of the parameters of interest. For such nonregular models, standard asymptotic

distribution theory does not apply. Previous work has focused on characterizing the nonstandard

limiting distributions of particular estimators in these models. In contrast, we study the problem

of constructing efficient point estimators. We show that the maximum likelihood estimator is

generally inefficient, but that the Bayes estimator is efficient according to the local asymptotic

minmax criterion for conventional loss functions. We provide intuition for this result using Le

Cam’s limits of experiments framework.



1 Introduction

This paper studies efficient point estimation of structural econometric models in which the boundary

of the support of the observed data depends on some of the parameters of interest, and on regressor

variables. This parameter-dependent support property arises in certain parametric auction models,

search models, and production frontier models. For such models, conventional asymptotic theory

does not apply.

Much of the previous work on models with parameter-dependent support, including Flinn and

Heckman (1982), Smith (1985), and Christensen and Kiefer (1991), Donald and Paarsch (1993),

Hong (1998), Donald and Paarsch (2002), and Chernozhukov and Hong (2001), has focused on

obtaining asymptotic distribution theory for maximum likelihood, Bayes, and other estimators.

The limit distributions of these estimators are generally nonnormal, making comparisons of different

estimators and efficiency considerations more difficult than in the regular case. We build on this

important earlier work by directly examining the efficiency issue and identifying a class of optimal

estimators.

We use the standard local asymptotic minmax criterion for optimality. This criterion compares

estimators by their maximum expected loss over a localized parameter space. In regular finite-

dimensional parametric models, this criterion coincides with other familiar optimality definitions

(for bowl-shaped loss functions) and leads to the conclusion that the maximum likelihood esti-

mator is optimal. However, inspection of proofs of the efficiency of the ML estimator show that

this property is quite closely tied to regularity of the underlying model. Because the models we

consider here are nonregular, there is no guarantee that ML will be efficient. In fact, we show that

for standard loss functions such as squared error loss, ML is generally inefficient in models with

parameter-dependent support.

We then consider Bayes estimators, which provide an alternative, likelihood-based method

of inference in parametric models. Recent work on Bayesian inference for search and auction

models includes Lancaster (1997), Kiefer and Steele (1998), Bajari (1998), Sareen (2000), and

Chernozhukov and Hong (2001). In regular parametric models, Bayes estimators are typically
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asymptotically equivalent to ML (see for example Ibragimov and Hasminskii (1981)). Hence, for

bowl-shaped loss functions, Bayes estimators are also efficient in regular models. In nonregular

models, ML and Bayes estimators are no longer necessarily asymptotically equivalent. We show

that, for the class of nonregular models where the boundary of the support depends on at least

some of the parameters, Bayes estimators are efficient.∗ Thus Bayes estimators remain efficient

under this form of nonregularity, while ML loses its efficiency properties.

We develop intuition for our result on the efficiency of Bayes estimators by applying the

Blackwell-Le Cam theory of limits of statistical experiments to various special cases. Using the

limits of experiments approach, we can characterize the entire class of attainable limit distributions

for estimators in a given model. In the case where the covariates have a discrete distribution, the

model we consider is asymptotically equivalent to a simpler model consisting of a vector of draws

from shifted exponential distributions. Asymptotic equivalence means that any limit distribution

for a statistic in our model of interest can be obtained as the exact distribution of a statistic in

the shifted exponential model. This result is useful, because the exponential shift experiment has

a simple structure which can be exploited to verify optimality of certain estimators. The shifted

exponential limit experiment is invariant under a group of transformations. Under certain condi-

tions on the group of transformations and the loss function, a generalized Bayes procedure with

respect to a flat prior is both minimum risk equivariant and minmax. Since Bayes estimators in

the original nonregular model have a limiting distribution equal to the distribution of the flat-prior

Bayes estimator in the limit experiment, the Bayes procedure in the nonregular model is locally

asymptotically minmax.

Our findings are closely related to earlier work on optimal estimation of simpler nonregular

models without covariates, in particular models for i.i.d. sampling from univariate densities with

jumps (Ibragimov and Hasminskii (1981), Pflug (1983), Ghosal and Samanta (1995)). Allowing for

covariates leads to more complicated limit experiments and requires an extension of the results on

asymptotic efficiency in Ibragimov and Hasminskii (1981).
∗It is possible to construct loss functions, using the Dirac delta function, such that the Bayes solution under a

flat prior is the MLE. However, our focus here is on standard loss functions, such as squared error loss and absolute
error loss.
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Recent work derives the limiting distributions of specific estimators in more general models

where there are regressor variables that can shift the support of the outcome variable (as well as

affect the shape of the outcome distribution in other ways). Donald and Paarsch (1993) develop

the asymptotic properties of ML estimation in models where the support can depend on discrete

covariates, and Donald and Paarsch (2002) consider analog-type estimators for such models. Cher-

nozhukov and Hong (2001) extend this work by allowing for continuous covariates and developing

limiting distributions for both Bayes and ML estimators. They also consider an expanded class of

models which includes a discontinuity in the density between two strictly positive values. Our work

also yields a limit distribution theory for Bayes estimators which is consistent with Chernozhukov

and Hong (2001), but our main focus is on obtaining asymptotic efficiency results in the nonregular,

parameter-dependent support setting with covariates and providing intuition through the limits of

experiments theory.

In the next section, we consider a special case of our general model: the experiment of observing

n independent and identically distributed draws from a uniform distribution on the interval [0, θ].

This model has been well studied, but is useful for introducing notation, discussing the general limits

of experiments framework, and providing intuition for our later results. Moreover, the inefficiency

of ML can be seen quite easily in this case. In section 3 we consider a more general model where the

support of the outcome variable can depend on both parameters and covariates. Our first step is

to provide a limits of experiments characterization in cases where the covariates are discrete. This

directly yields intuition for optimality of the Bayes estimator, using the invariance properties of the

limit experiment. Then, in section 4, we study the asymptotics of Bayes estimators and provide an

efficiency result that applies to general distributions of the covariates. Section 5 concludes.

2 Uniform Model

Under standard classical conditions, maximum likelihood estimators are consistent, asymptotically

normal, and efficient. A well known example of a model where the classical conditions do not hold,

is the experiment of observing a random sample of size n from a uniform distribution on the interval

[0, θ], for θ ∈ Θ ⊂ R++. We use this example to illustrate the inefficiency of ML, and to show that
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an efficiency bound can still be obtained in this nonregular case and that Bayes estimators attain

the bound. The intuition from the uniform model will carry over in a very direct way to the more

general models considered in section 3.

2.1 Estimation

Let Z1, . . . , Zn be an i.i.d. sample from U [0, θ], the uniform distribution with density p(Z|θ) =

1{0 ≤ Z ≤ θ}/θ, where 1{A} is the indicator function for the event A. The likelihood function is

p(Z1, . . . , Zn|θ) =
(

1
θ

)n
1{0 ≤ Z(n) ≤ θ},

where Z(n) denotes the nth order statistic, i.e. the sample maximum. The maximum likelihood

estimator is simply θ̂ML = Z(n). Its limiting distribution is

n(θ̂ML − θ) ; −Exp
(

1
θ

)
,

where Exp(1/θ) denotes an exponentially distributed random variable with hazard rate 1/θ, and ;

denotes convergence in distribution. Clearly, the estimator is not asymptotically normal. Although

it converges at rate n, much faster than the usual
√
n rate, the fact that the limiting distribution

lies completely to one side of the true parameter suggests that even better estimators may exist.

Bayesian estimation of θ provides an alternative approach to maximum likelihood estimation.

Given a prior π(θ) on Θ, the posterior distribution p(θ|Z1, . . . , Zn) is given by Bayes Theorem.

Then given a loss function l(θ, a), the Bayes estimate chooses a to minimize posterior expected loss

E[l(θ, a)|Z1, . . . , Zn] =
∫
l(θ, a)p(θ|Z1, . . . , Zn)dθ.

Here, a is interpreted as an estimate of θ. For a given prior π and loss l, the corresponding Bayes

estimator can be regarded as a decision rule that takes the observed values of Z1, . . . , Zn and

produces an estimate of θ. For example, suppose we choose squared error loss, l(θ, a) = (a − θ)2,

and the (improper) prior π(θ) = 1{0 < θ}/θ2. Then the posterior density can be calculated to be

p(θ|Z1, . . . , Zn) = (n+ 1)Zn+1
(n) 1{Z(n) ≤ θ}/θn+2. The Bayes estimator for squared error loss is the

posterior mean, θ̃B = Z(n)(n+ 1)/n. The limiting distribution can be shown to be

n(θ̃B − θ) ; θ − Exp
(

1
θ

)
.
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The convergence rate is the same as maximum likelihood estimator, but now the limiting distribu-

tion is centered to have mean zero. Clearly, the Bayes estimator will dominate the ML estimator

for squared error loss. It can also be shown that using a different prior typically does not change the

asymptotic distribution of the Bayes estimator, because the prior is dominated by the likelihood

as the sample size increases.

In the case of squared error loss, the Bayes estimator can be interpreted as a bias-corrected

version of ML.† But this does not guarantee that the Bayes estimator will be efficient among all

estimators. The limits of experiments framework, described next, allows us to obtain stronger

results on the efficiency of Bayes estimators for a wide class of loss functions.

2.2 Limits of Experiments

The limits of experiments theory is an approximation theory for statistical models rather than

for estimators within a given model. It provides a parsimonious description of the entire set of

attainable limit distributions among estimators in the statistical model. This description, in turn,

can often suggest the form of optimal estimators.

An experiment (Z,A, Ph : h ∈ H) is a measurable space (Z,A) along with a collection of

probability measures on that space indexed by a parameter h. The experiment is interpreted as

the situation where we observed a random variable Z on (Z,A), distributed as Ph for some h in a

parameter space H. We use h to denote a local parameter, related to the original model by θ+ψnh

for some fixed θ in the original parameter space and a normalization sequence ψn −→ 0. In regular

cases ψn = 1√
n
I, where I is the identity matrix, while in the nonregular cases we consider here,

some of the diagonal elements of ψn are 1/n rather than 1/
√
n.

The likelihood ratio process based at h0 ∈ H is defined as
(
dPh
dPh0

(Z)
)
h∈H

. Because it depends

on the random variable Z, it can be regarded as a stochastic process defined on H. A sequence

of experiments En = (Pn,h : h ∈ H) is said to converge to the experiments E = (Ph : h ∈ H) if

the finite dimensional distributions of the likelihood ratio process converge to the corresponding
†Cavanagh, Jones, and Rothenberg (1990) consider bias-corrected ML estimators in regular models under general

loss functions. They show that bias-corrected ML (with the bias-correction depending on the loss function) is efficient
among asymptotically normal estimators. Efficiency of bias-corrected ML among all estimators in possibly nonregular
models is considered in Hirano and Porter (2002).
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distributions of the likelihood ratio process for E , i.e. for every finite subset I ⊂ H and every

h0 ∈ H, (
dPn,h
dPn,h0

)
h∈I

h0
;

(
dPh
dPh0

)
h∈I

.

Here h0
; denotes weak convergence under the local parameter sequence {θ + ψnh0}. Since the

likelihood is a sufficient statistic, it is not surprising that properties of an experiment can be

explored through the likelihood ratio process. A key result from the limits of experiments theory

is the following:

Theorem 1 (Asymptotic Representation Theorem) Suppose that a sequence of experiments En =

(Pn,h : h ∈ H) converges to an experiment E such that E, regarded as a set of measures, is dominated

by a σ-finite measure. Let Tn be a sequence of statistics in En that converges weakly to a limit law

Qh for every parameter h, where the Qh concentrate on a fixed Polish set. Then there exists a

(possibly randomized) statistic T in E such that for every h ∈ H, Tn
h
; T .

Proof: See Van der Vaart (1996), or Van der Vaart (1991) for a more general version.

Thus, by studying the limit experiment E we can characterize the set of attainable limit distri-

butions in the original experiment. For example, limit experiments have been used to study the

efficiency of maximum likelihood estimation in regular models via local asymptotic normality. We

use the limit experiment theory to understand efficiency in the nonregular U [0, θ] model.

2.3 Limits of Experiments Analysis of the Uniform Model

Now we return to our example of observing a random sample from U [0, θ]. In contrast to the usual

regular case, here the appropriate scaling factor for a local parameter sequence is ψn = 1/n. Thus

a local parameter h ∈ R corresponds to the sequence of models U [0, θ−(h/n)]. The likelihood ratio

has the form

dPn,h
dPn,h0

=
(θ − h0/n)n

(θ − h/n)n
1{Z(n) ≤ θ − h/n}

almost surely under Pn,h0 . It can be shown that

dPn,h
dPn,h0

h0
; exp

(
(h− h0)

θ

)
1{W ≥ h}.
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where W is distributed as a shifted exponential with density fW (w) = exp
(

(h0−w)
θ

)
1{w ≥ h0}/θ.

Next, consider the situation where we observe a single draw W from the shifted exponential

distribution with density fW . The likelihood ratio for this experiment is exp((h−h0)/θ)1{W ≥ h},

exactly the same as the limiting likelihood ratio in the uniform case. Hence the finite-dimensional

distributions of the likelihood ratio process from the U [0, θ] experiment converge to the finite-

dimensional distributions for an observation from a shifted exponential with hazard rate 1/θ.

From the asymptotic representation theorem, we know that estimators of θ have a limiting

distribution equal to the distribution of some randomized estimator in the shifted exponential limit

experiment. Consider a randomized estimator, T , in the limit experiment. This estimator has

maximum risk, suphEhl(T − h) where the expectation is taken under h. The minmax risk bound

in the limit experiment is then

R = inf
T

sup
h
Ehl(T − h),

where the infimum is taken over all randomized estimators. It follows that this expression is also

the asymptotic minmax risk bound for estimators in the original experiment, i.e.

lim inf
n−→∞

sup
h∈H

Ehl(n(θ̂ − θ + h/n)) ≥ R,

provided θ̂ has a limit distribution under every h, and l is lower semicontinuous. So the (exact)

lower bound for an estimator of the shift from a single observation from a shifted exponential gives

the asymptotic bound for estimators of θ from a random sample from U [0, θ]. The lower bound,

and the form of optimal estimators, will generally depend on the choice of loss function; this finding

can be contrasted with the local asymptotic normal case, in which a single estimator, the MLE, is

known to be minmax for all bowl-shaped loss functions.

For the shifted exponential experiment with squared error loss, this bound is known from

classical decision theory to be R = θ2. The asymptotic risk of the maximum likelihood estimator

is 2θ2. On the other hand, the Bayes estimator, Z(n)(n+ 1)/n, has risk θ2. So the Bayes estimator

for squared error loss is efficient for squared error loss minimax risk.

Similar calculations can be carried out for other risk functions. However, there is a useful

heuristic argument that shows that Bayes estimators generally will be efficient when the experiment
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has a shift form, following Berger (1985), Section 6.3. Suppose we observe a single draw for a random

variable W with density f(w − h), where h is a location parameter in R. Assume the loss l(h, a)

has the form l(a− h). Since the problem is location invariant, it is natural to focus on equivariant

estimators, i.e. estimators which have the form

δ(w + c) = δ(w) + c

Then δ(0) = δ(w)− w, so we can write

δ(w) = w + δ(0) = w +K.

It can be shown that an equivariant rule has constant risk

R(h, δ) = R(0, δ) =
∫
l(w +K)f(w)dw.

The minimum risk equivariant (MRE) rule minimizes the previous expression. According to the

Hunt-Stein theorem (see e.g. Kiefer (1957) and Wesler (1959)), under some conditions the MRE

rule turns out to be minmax over all possible decision rules.

Now consider the (generalized) Bayes estimator with respect to the constant prior. This mini-

mizes expected loss with respect to the posterior

p(h|w) = c · f(w − h) = f(w − h).

The posterior expected loss is

E(l(a− h)|w) =
∫
l(a− h)f(w − h)dh =

∫
l(y +K)f(y)dy

(setting y = w − h and K = a − w). Minimizing this is the same as finding the MRE rule; hence

the generalized Bayes estimator is minmax.

Under weak conditions on the prior, the Bayes estimator in the uniform model for a given loss

function will have the same limit distribution as the Bayes estimate with flat prior in the shifted

exponential experiment, because the prior gets dominated by the likelihood function in the limit. It

follows that the Bayes estimator in the uniform experiment will be locally asymptotically minmax,

for a fairly arbitrary choice of prior.
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3 Limit Experiments for Regression Models with Parameter-Dependent
Support

Having developed intuition from the simple uniform case, we examine more general models using the

limits of experiments framework. We are interested in econometric models where the conditional

density of a scalar yi given a vector of covariates xi has the form

f(yi|xi, θ, γ)1(yi ≥ g(xi, θ)),

where θ and γ are finite-dimensional parameters, and where, for xi in some set with positive

probability, the conditional density of yi at its support boundary g(xi, θ) is strictly positive. A

general optimality result will be given in Section 4 along with precise conditions on the model. In

this section, we focus on using the limits of experiments framework to provide intuition for the

efficiency of Bayes estimators.

3.1 Limit Experiment with No Covariates

First, let us consider the special case with no covariates and a scalar parameter. We assume that

the yi are i.i.d. with density

f(yi|θ)1(yi ≥ g(θ)),

where θ ∈ Θ, a compact subset of R. Let Pnθ denote the joint law of y1, . . . , yn. Assume that

f(g(θ)|θ) > 0, and that g is continuously differentiable with derivative g′ > 0. As a consequence of

the general limit experiment result in Theorem 2 below, we have the following finite-dimensional

limit likelihood ratio process: for every h0 ∈ R and every finite set I ⊂ R,(
dPnθ+h/n

dPnθ+h0/n

)
h∈I

h0
;

(
exp

(
(h− h0)

λ

)
1(W > h)

)
h∈I

,

where λ = [f(g(θ)|θ)g′(θ)]−1 and W is a random variable with the shifted exponential density

fW (w) = exp (−(w − h0)/λ) 1(w > h0)/λ. This is essentially the same likelihood ratio process as

in the uniform model. It follows that the experiment consisting of observing one draw from the

shifted exponential density

fW (w) = exp (−(w − h)/λ) 1(w > h)/λ,
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where λ = [f(g(θ)|θ)g′(θ)]−1, is asymptotically equivalent. By the reasoning we used in the uniform

case, the Bayes estimator will be optimal.

3.2 Limit Experiment with Covariates

We next turn to the case with covariates. We assume that (yi, xi) is i.i.d. on Y × X , where Y ⊂ R

and X ⊂ R
m. Assume X is compact, and that x has marginal distribution Px. The outcome

variable y has a conditional density with respect to Lebesgue measure of the form:

f(yi|xi, γ, θ)1(yi ≥ g(xi, θ)),

where γ ∈ Γ ⊂ Rd, θ ∈ Θ ⊂ Rk, Γ and Θ are compact.

We will use local parameter sequences

θ +
u

n
, u ∈ Rk,

γ +
v√
n
, v ∈ Rd.

Let α = (θ, γ), h = (u′, v′)′, and h0 = (u′0, v
′
0)′.

Next we state a result on the limit of the likelihood ratio process for the general model. The

assumptions referred to below consist of fairly standard regularity conditions, which will be dis-

cussed in detail in Section 4. For now, we focus on using the conclusion of the theorem to provide

further intuition.

Theorem 2 Let Pnh denote the joint law of (y1, x1), . . . , (yn, xn) under α+ ϕnh. Under Assump-

tions 1 - 6, for every h0 and every finite I ⊂ H,(
dPnh
dPnh0

(Y n, Xn)

)
h∈I

h0
;

(
exp((v − v0)′T − 1

2
(v − v0)′Iγ(v − v0)) exp

(
E[f(g(x, θ)|x, θ, γ)∇θg′](u− u0)

)
Dh

)
h∈I

where Iγ = Eα [∇γ ln f(y|x, α)∇γ ln f(y|x, α)′], and under h0, T and (Dh)h∈I are independent with

T ∼ N(0, Iγ). (Dh)h∈I are jointly distributed Bernoulli random variables whose distribution is
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specified by the following marginal probabilities. Let {h1, . . . , hl} ⊂ I.

Pα(Dh1 = 1, . . . , Dhl = 1)

= exp(−E[1{max{∇θg(x, θ)′(u1 − u0), . . . ,∇θg(x, θ)′(ul − u0)} > 0}

·f(g(x, θ)|x, α) max{∇θg(x, θ)′(u1 − u0), . . . ,∇θg(x, θ)′(ul − u0)}]).

The limiting likelihood ratio process now depends on the marginal distribution of the covariates,

through the expectation terms. To our knowledge, this more complicated likelihood ratio process

has not been studied before in the limits of experiments literature. Below, we concentrate on the

discrete covariates case, where it is possible to obtain a useful limit experiment that provides intu-

ition for the optimality of Bayes estimators. We then comment briefly on the case with continuous

covariates.

Assume that in the original model, x takes on the values {a1, a2, . . . , aL}. Let px(aj) := Pr(x =

aj). Consider the experiment consisting of observing a draw from (S,W1, . . . ,WL), where S is

distributed as N(v, I−1
γ ), and Wj is a random variable with the shifted exponential density

fWj (w) = exp (−(w − gj)/λj) 1(w > gj)/λj ,

with gj = ∇θg(aj , θ)′u and λj = [px(aj)f(g(aj , θ)|aj , θ, γ)]−1, and (S,W1, . . . ,WL) are jointly

independent. This experiment can be verified to have the same likelihood ratio process, so it can

serve as a limit experiment for the general model with discrete covariates.

This limit experiment is more complicated than in the usual local asymptotic normal case, or

the pure exponential shift case. Nevertheless, its structure has enough in common with these more

conventional limit experiments that we can obtain some useful intuition. The normally distributed

component is independent of the other variables, so we can consider it separately. By standard

arguments, the Bayes estimator with a flat prior will be minmax for this component.

The remaining components of the limit experiment correspond to an L×1 vector of exponential

random variables W = (W1, . . . ,WL), with known hazard and a vector shift H ′u, where

H =

 ∇θg(a1, θ)′
...

∇θg(aL, θ)′

 .
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We shall refer to this as the generalized exponential shift model. Assume that L ≥ k and that the

L×k matrix H has full column rank. This is not a pure shift experiment, but it does have a similar

equivariance property. For any c ∈ Rk, consider a transformation of the original data

gc(W ) = W +Hc.

Notice that if W is distributed according to the generalized exponential shift model with parameter

u, then gc(W ) has the same distribution, but with parameter u + c. By reasoning similar to that

used at the end of Section 2, it can be shown that the Bayes estimator with a flat prior is equivariant.

That is, if the Bayes estimate given an observation W is ã, then the Bayes estimate given gc(W ) is

ã+c. Furthermore, the Bayes estimator is actually the minimum risk equivariant estimator. Under

a condition known as amenability, which can be verified here, the Hunt-Stein theorem applies, and

the minimum risk equivariant estimator is also minmax.

For completeness, we show these steps formally in Appendix A. We can then conclude that in the

original problem, estimators which asymptotically have limit distributions equal to the distribution

of the Bayes estimator with respect to a flat prior, will be locally asymptotically minmax. An

obvious choice is any Bayes estimator; since the prior will typically be dominated as the sample

size increases, it will behave like flat-prior Bayes asymptotically. The results of the next section

establish this formally.

Extending this argument to the continuous case would be complicated. Taking the limit of

the discrete covariate limit experiment as the discrete points of support become dense in X seems

to lead to a stochastic process indexed by elements of X . However, the existence of a limiting

stochastic process is not guaranteed due to the dependence of the conditional hazard on the marginal

distribution of x. Similar cases do not appear to have been examined in the limit experiment

literature, although it is often possible to construct limit experiments, defined on relatively abstract

spaces, which have a desired likelihood ratio process.‡ Even with a limit experiment, extending our

efficiency argument would appear to require a more general equivariance notion. We do not attempt

to develop that theory here, and instead proceed in the next section with a general efficiency result
‡see, for example, Van der Vaart (1996) Example 10.9.
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which allows for continuous covariates.

4 Asymptotic Properties of Bayes Estimators

The results of the previous two sections showed that, in various special cases, the limit experiment

had an invariance property which implied that flat-prior Bayes is minmax. (Of course, there may

be other estimators which have different risk functions but the same minmax risk.) In looking for

local asymptotic minmax estimators for the original model, it is therefore natural to investigate

the asymptotic properties of Bayes estimators for general priors. In this section, we show that

Bayes estimators behave asymptotically like flat-prior Bayes with respect to the limiting likelihood

ratio process. We then show that for the general model (including the case where covariates are

continuous), the Bayes estimator is locally asymptotically minmax, using a strategy suggested by

Ibragimov and Hasminskii (1981).

As in the previous section we will use the local parameter sequences θ0 + u
n , for u ∈ Rk, and

γ0 + v√
n

, for v ∈ Rd for some fixed (θ0, γ0). Define the local parameter spaces as

Un = n(Θ− θ0),

Vn =
√
n(Γ− γ0).

Let

α0 =
(
θ0

γ0

)
, h =

(
u
v

)
, and h0 =

(
u0

v0

)
.

Also, let ϕn denote a square, diagonal matrix where the first k diagonal elements are 1/n and the

remaining d diagonal elements are 1/
√
n.

To define a Bayes estimator, let the prior π be a (possibly improper) Lebesgue density on Θ×Γ.

The Bayes estimator α̃n is any solution to

min
α̃

∫
l(ϕ−1

n (α̃− (α0 + ϕnh)))
n∏
i=1

f(yi|xi, α0 + ϕnh)1{yi ≥ g(xi, θ0 + u/n)}π(α0 + ϕnh)dh.

This defines the Bayes estimator as minimizing posterior expected loss, where the posterior dis-

tribution is with respect to the local parameter h. There is, of course, an equivalent definition in

terms of the original parameter α (= α0 +ϕnh). Note that if l(x) = x2, then the Bayes estimator is
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the mean of the posterior distribution, while if l(x) = |x| then the solution is the posterior median.

Thus the posterior mean will be shown to be asymptotically efficient for squared error loss, while

the posterior median will be shown to be optimal for absolute error loss.

We assume the following six conditions on the model.

Assumption 1 (yi, xi) is i.i.d. on Y × X , where Y ⊂ R and X ⊂ Rm. Assume X is compact. x

has marginal distribution Px. y has a conditional density with respect to Lebesgue measure of the

form:

f(yi|xi, γ, θ)1(yi ≥ g(xi, θ)),

where γ ∈ Γ ⊂ Rd, θ ∈ Θ ⊂ Rk, Γ×Θ is compact and convex.

Assumption 2 f(y|x, α) is twice continuously differentiable in α for all y and x, g(x, θ) is con-

tinuously differentiable in θ for all x. Also, in some open neighborhood N of α0, f(y|x, α) > 0 and

f(y|x, α) < ∞ uniformly in y, x and α ∈ N , and f(y|x, α) and ∇αf(y|x, α) are equicontinuous in

y for α ∈ N .

Assumption 3 ∫ ∫
sup
α∈N
‖∇αf(y|x, α)‖1(y ≥ g(x, θ))dydPx(x) <∞∫ ∫

sup
ᾱ,α∈N

||∇αf(y|x, ᾱ)||2

f(y|x, ᾱ)2
1(y ≥ g(x, θ))f(y|x, α)dydPx(x) <∞

∫ ∫
sup
ᾱ,α∈N

‖∇ααf(y|x, ᾱ)‖1+δ

f(y|x, ᾱ)
1(y ≥ g(x, θ))f(y|x, α)dydPx(x) <∞

for some δ > 0.

Assumption 4 The function Jγγij (α) = Eα[∇γi ln f(y|x, α)∇γj ln f(y|x, α)] and similarly defined

Jγθij and Jθθij are continuous in α. For each i, j, Jγγij (α) has a majorant that is a product of a

polynomial in ‖θ‖ and exponential in ‖γ‖. Also, uniformly on N , Jγθij and Jθθij are bounded and the

minimum eigenvalue of Iγ is bounded away from zero, where Iγ is the matrix with elements Jγγij .

Assumption 5

Ex[ sup
α∈N
‖∇θg(x, θ)‖] <∞
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Assumption 6 There exists ε > 0 such that

inf
α,ᾱ∈N

Prα(y ≥ g(x, θ̄)) ≥ ε

and

inf
α∈N

inf
‖w‖=1

Ex
[
f(g(x, θ)|x, α)|∇θg(x, θ)′w|

]
≥ ε.

These assumptions include standard smoothness and moment bounding conditions. As in Cher-

nozhukov and Hong (2001) we do not require discreteness of x. Assumption 5 assures that the

boundary function g itself does not contain any jump discontinuities. Assumption 6 is essentially

an identification assumption. The second part specifies that the density of y is nonnegligible at the

boundary for small deviations of θ in any direction.

These assumptions should be satisfied in many parametric auction, search, and production

frontier models as discussed in Donald and Paarsch (1993). To illustrate the applicability of our

results, we briefly describe an auction model adapted from Paarsch (1992).

Example: Symmetric Procurement Auction with Independent Private Values and Exponential

Cost Distribution.

The task being auctioned has characteristics x observed by all agents. For each of m bidders,

a cost c for the task is drawn independently from an exponential distribution conditional on the

characteristics x. The cost density and cumulative distribution function are

fc(c|x, θ) =
1

h(x, θ)
exp

(
− c

h(x, θ)

)
1{c ≥ 0}

Fc(c|x, θ) = 1− exp
(
− c

h(x, θ)

)
where E(c|x, θ) = h(x, θ), so h(x, θ) is the function giving the mean cost given characteristics x. The

objective is to estimate θ. Given a cost, each agent submits a bid observed by the econometrician.

Expected profit maximization leads to a symmetric Bayesian-Nash equilibrium bid function:

b = β(c|x, θ) = c+

∫∞
c [1− Fc(u|x, θ)]m−1du

[1− Fc(c|x, θ)]m−1
= c+

h(x, θ)
m− 1

.
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So the bid distribution is a simply a shift of the cost distribution.

fb(b|x, θ) =
1

h(x, θ)
exp

(
−1

h(x, θ)

(
b− h(x, θ)

m− 1

))
1
{
b ≥ h(x, θ)

m− 1

}
In our notation,

f(b|x, θ) =
1

h(x, θ)
exp

(
−1

h(x, θ)

(
b− h(x, θ)

m− 1

))
and

g(x, θ) =
h(x, θ)
m− 1

Then the following conditions would imply Assumptions 1-6:

(a) X is compact, and x has marginal distribution Px which does not depend on θ.

(b) Θ ⊂ Rk is compact and convex. Let Nθ be an open neighborhood of θ0.

(c) h̄ = supθ∈Nθ supx∈X h(x, θ) <∞, and h = infθ∈Nθ infx∈X h(x, θ) > 0.

(d) h is twice continuously differentiable in θ for all x.

(e) For some δ > 0, E
[
supθ∈Nθ ‖∇θh(x, θ)‖2+2δ

]
<∞ and E

[
supθ∈Nθ ‖∇θθh(x, θ)‖1+δ

]
<∞.

(f) infθ∈Nθ inf‖w‖=1Ex[|∇θh(x, θ)′w|] > 0.

Condition (c) bounds h away from zero and infinity on X and Θ. Conditions (d) and (e) are

standard smoothness and moment conditions. Condition (f) is basically a weak stochastic linear

independence condition for∇θh(x, θ). These conditions would be satisfied, for instance, with h(x, θ)

= 1 + x1θ1 + x2θ2, Θ = [0, 1] × [0, 1], and (x1, x2) uniformly distributed on X = [0, 1] × [0, 1]. In

Appendix B, we verify that the auction model satisifes our Assumptions 1-6. A similar set of

conditions could be used to verify the assumptions for related auction models given in Paarsch

(1992) based on Pareto and Weibull cost distributions.

We also make the following assumptions about the loss function and the prior.

Assumption 7 The loss function l : Rk+d → [0,∞) satisfies

(a) l is continuous and not identically 0.
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(b) l(0) = 0.

(c) l has a polynomial majorant:

l(x) ≤ B0(1 + ||x||b)

for some B0, b > 0, all x ∈ Rk+d.

(d) There exist numbers H0, η > 0 such that for all H ≥ H0,

sup{l(x) : x ≤ Hη} − inf{l(x) : x ≥ H} ≤ 0.

Assumption 8 The prior π is continuous and positive at α0, with a polynomial majorant.

The assumptions on the loss function and the prior are fairly weak, and allow for most choices of

prior and loss of which we are aware. For example, we do not require symmetry or convexity of the

loss function. Part (d) of Assumption 7 limits the amount that the loss function can decrease in the

tails. In the efficiency result below, we will also require that the limit of the expected posterior loss

has a unique minimum. Alternatively, the uniqueness could be guaranteed by additional conditions

on the loss function.

Recall that Theorem 2, given in the previous section, shows that under Assumptions 1-6, the

finite-dimensional distributions of the likelihood ratio process

Zn,α0+ϕnh0(h) ≡
dPnα0+ϕnh

dPnα0+ϕnh0

(Y n, Xn),

converge in distribution to a particular process. Let us denote the limiting process as Zα0,h0(h), or

just Zα0(h) when we are considering cases in which h0 = 0.

The next result is the main result of the paper. It strengthens the finite-dimensional convergence

of the likelihood ratio process to convergence in distribution of the Bayes estimator, and then shows

that the Bayes estimator is locally asymptotically minmax.

Theorem 3 Suppose Assumptions 1-8 hold. Also, suppose

ψα0(s, t) =
∫
<k+d

l(s− u, t− v)
Zα0(u, v)∫

<k+d Zα0(ū, v̄)dūdv̄
dudv.

attains its minimum at a unique point, τα0. Then

(n(θ̃n − θ0),
√
n(γ̃n − γ0)) ; τα0
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Moreover, α̃n is asymptotically efficient at α0 with respect to loss l.

Remarks: Assumptions 1 - 6 are used to establish some intermediate results concerning the

properties of the likelihood ratio process. Theorem 3 could be restated assuming these intermediate

results as high-level conditions in place of Assumptions 1 - 6. This generalization could be applied

to different models than the one considered here. In Appendix C, the result based on the higher

level assumptions is discussed in more detail.

5 Conclusion

We have studied optimal estimation of models where the support depends on parameters and

covariates. Under the local asymptotic minmax criterion, Bayes estimators are efficient in these

models. We provided intuition for this result by first examining the Uniform[0, θ] model. Then we

considered a general model with discrete covariates. For this model, we provided further intuition

for efficiency of Bayes, by showing that the limit experiment had an invariance property that implied

minimaxity of flat prior Bayes. Finally, we considered general covariate distributions and proved

the asymptotic efficiency of Bayes estimators.

Throughout the paper we have focused on point estimation under a given loss function. However,

the limits of experiments theory can also be informative about optimal testing (see, for example,

Ploberger (1998)), and other aspects of inference such as construction of confidence intervals and

predictive intervals. We leave such topics for future work.
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A Generalized Exponential Shift Model

In this section we examine the exponential shift model in further detail. Consider the experiment

{Pu : u ∈ Rk}, which consists of observing a random vector W = (W1, . . . ,WL), for L ≥ k, where Pu

specifies that the components Wj are independently distribution with shifted exponential densities

fj(wj |u) = exp
(
−(wj −H ′ju)/λj

)
1(wj > H ′ju)/λj .

We assume that the λj and Hj are known, with λj > 0, and that the L× k matrix

H :=

 H ′1
...
H ′L


has full column rank.

Let the loss function l(u, a) for estimating u have the form l(u, a) = l(u − a), with l(0) = 0,

l ≥ 0, and l continuous and strictly convex. Assume that for every real number τ , the set

{a : l(u− a) ≤ τ}

is compact for all u ∈ Rk. Let ũ be the generalized Bayes estimator corresponding to the flat prior

for u: ũ solves

min
ũ

∫
l(u− ũ)

L∏
j=1

fj(Wj |u)du.

Assume ũ exists and is unique. Then we claim that ũ is minmax for loss l. To provide a formal

justification for this claim, we set up the experiment as a group family. On the sample space RL,

define the group of transformations G = {gc : c ∈ Rk}, where

gcw = w +Hc.

We can regard G as the Euclidean space Rk with the usual topology. The composition operator is

gc ◦ gd = gc+d, and the identity element is e = g0. The inverse is g−1
c = g−c. We define associated

groups G and G̃ on the parameter space and action space respectively. Here G = {gc : c ∈ Rk},

with

gcu = u+ c
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and G̃ = G. All three groups are abelian: gc◦gd = gd◦gc. It can be readily seen that the experiment

{Pu : u ∈ Rk} is invariant under the action of G and G, and that the loss (since it is of the form

l(u− a)) is invariant under G̃.

Next, we will show that the generalized Bayes estimator with respect to the right Haar measure

associated with group G and given loss l, is the minimum risk equivariant (MRE) estimator. This

can be verified using Theorem 6.59 of Schervish (1995). To apply that result we need to verify the

following conditions:

1. The experiment is invariant under the action of G,G.

2. The left Haar measure λ and the right Haar measure ρ exist.

3. (a) G is a topological group.

(b) λ is σ-finite and not identically 0.

(c) The function f : G × G → G defined by f(g, h) = g−1 ◦ h is continuous.

4. The mapping φ : G → G defined by φ(g) = g is a group isomorphism.

5. There is a bimeasurable (measurable, one-to-one and onto, with measurable inverse) mapping

η : Rk → G which satisfies g ◦ η(u) = η(gu) for all g ∈ G and all u ∈ Rk.

6. There exists a bimeasurable function t : RL → G × Y for some space Y (where we write

t(w) = (h, y)) such that, for every g ∈ G and w ∈ RL,

t(w) = (h, y) =⇒ t(gw) = (g ◦ h, y).

7. For every u, the distribution of on G × Y induced from Pu by t has a density with respect to

λ× v, where v is some measure on Y.

Condition 1 is immediate from the definition of the groups and the translation nature of the

experiment. Since G is the translation group on Rk it can be readily seen that Lebesgue measure is

both a left and right Haar measure, verifying condition 2. For condition 3, note that G = R
k and
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hence it is a topological space. Lebesgue measure is σ-finite and not identically 0. Also note that

f(gc, gd) = g−1
c ◦ gd = gd−c which is easily seen to be continuous.

To verify condition 4, write

φ(gc ◦ gd) = φ(gc+d)

= gc+d

= gc ◦ gd

= φ(gc) ◦ φ(gd).

So φ is a group homomorphism, and since it is clearly one-to-one and onto, is a group isomorphism.

To verify condition 5, let η(u) = gu. This is clearly bimeasurable. We have

gc ◦ η(u) = gc ◦ gu

= gc+u

= η(c+ u)

= η(gcu).

To verify conditions 6 and 7, we need to construct a maximal invariant (a statistic that identifies

orbits of G). By assumption, H has full column rank and hence row rank of k. Thus there are k

linearly independent rows of H. Reorder the elements of W (and the corresponding rows of H) so

that the first k elements correspond to the k linearly independent rows of H. Then define

H̃ =

 H ′1
...
H ′k

 .

t(w) =

H̃−1

 w1
...
wk

 ,

 wk+1
...
wL

−
 H ′k+1

...
H ′L

 H̃−1

 w1
...
wk


 .

It can be seen that t satisfies the requirements of condition 6 and that the distribution of t has

a density with respect to the product of Lebesgue measures on Rk and RL−k. (If L = k (so that

there is only a single orbit) we can modify the argument by having Y be an arbitrary singleton set

with counting measure.)
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Therefore we conclude that ũ is the MRE.

Next, we want to show that the MRE is in fact minmax over all possible estimators. To apply

the generalized version of the Hunt-Stein theorem due to Wesler (1959), we need to verify the

following conditions:

1. The distributions Pu are dominated by a σ-finite measure.

2. The action space is a separable metric space, and for each u ∈ Rk, l(u, a) is nonnegative and

continuous in a, and for every real number τ , the set

{a : l(u, a) ≤ τ}

is compact.

3. G satisfies a condition known as amenability (see Bondar and Milnes (1981) for various equiv-

alent conditions for amenability).

4. G is a locally compact, σ-compact topological group with its Borel σ-algebra generated by

the compact subsets of G.

The first two conditions are immediate. To show amenability, note that Bondar and Milnes

(1981) point out that if a locally compact group is abelian, then it is amenable. The group G is a

Euclidean space and hence satisfies condition 4.

B Procurement Auction Example: Verifying Assumptions 1-6

In section 4, a specific auction model is introduced that satisfies Assumptions 1-6 under the Con-

ditions (a)-(f) provided there. Details of the assumption verification are given here.

Assumption 1 follows by Conditions (a) and (b).

To show equicontinuity of f(b|x, θ) and ∇θf(b|x, θ) for Assumption 2, note that

|f(b|x, θ)− f(b′|x, θ)| = exp
(

1
m− 1

)
1

h(x, θ)
exp

(
− b

h(x, θ)

) ∣∣∣∣1− exp
(
b− b′

h(x, θ)

)∣∣∣∣
≤ exp

(
1

m− 1

)
1
hx

exp
(
− b

h̄x

)
max

{
exp

(
|b− b′|

hx

)
− 1, 1− exp

(
−|b− b′|

h̄x

)}
.
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This last expression converges to zero as b′ −→ b for fixed b, x regardless of the value of θ.

|∇θf(b|x, θ)−∇θf(b′|x, θ)|

=
∥∥∥∥ exp

(
1

m− 1

)
∇θh(x, θ)
h2(x, θ)

[
exp

(
− b′

h(x, θ)

)
− exp

(
− b

h(x, θ)

)]
+ exp

(
1

m− 1

)
∇θh(x, θ)
h3(x, θ)

[
b exp

(
− b

h(x, θ)

)
− b′ exp

(
− b′

h(x, θ)

)]∥∥∥∥
≤ exp

(
1

m− 1

)
‖∇θh(x, θ)‖

[
1
h2
x

exp
(
− b

h̄x

)
max

{
exp

(
|b− b′|

hx

)
− 1, 1− exp

(
−|b− b′|

h̄x

)}
+

1
h3
x

exp
(
− b

h̄x

)
|b− b′|+ 1

h3
x

b′ exp
(
− b

h̄x

)
max

{
exp

(
|b− b′|

hx

)
− 1, 1− exp

(
−|b− b′|

h̄x

)}]
which converges to zero as b′ −→ b regardless of θ, since supθ∈Nθ ‖∇θh(x, θ)‖ < ∞ by continuous

differentability of h in θ and compactness of X .

Then under Conditions (a), (c), and (d), Assumption 2 is satisfied.

Let hx = infθ∈Nθ h(x, θ), h̄x = supθ∈Nθ h(x, θ), and note that

∫ ∞
h̄x/(m−1)

exp
(
−τ
(
b

h̄x
− 1
m− 1

))
db =

h̄x
τ

∫ ∞
h̄x/(m−1)

b exp
(
−τ
(
b

h̄x
− 1
m− 1

))
db =

h̄2
x

τ(m− 1)
+
h̄2
x

τ

∫ ∞
h̄x/(m−1)

b2 exp
(
−τ
(
b

h̄x
− 1
m− 1

))
db =

h̄3
x

τ(m− 1)2
+

2h̄3
x

τ2(m− 1)
+

2h̄3
x

τ3

∫ ∞
h̄x/(m−1)

b3 exp
(
−τ
(
b

h̄x
− 1
m− 1

))
db =

h̄4
x

τ(m− 1)3
+

3h̄4
x

τ2(m− 1)2
+

6h̄4
x

τ3(m− 1)
+

6h̄4
x

τ4
.

Note for hx
m−1 ≤ b ≤

h̄x
m−1 , exp

(
−1

h(x,θ)

(
b− h(x,θ)

m−1

))
1
{
b ≥ h(x,θ)

m−1

}
≤ 1.
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∫ ∫
sup
θ∈Nθ

‖∇θf(b|x, θ)‖1{b ≥ g(x, θ)}dbdPx(x)

=
∫ ∫

sup
θ∈Nθ

exp
(
−1

h(x, θ)

(
b− h(x, θ)

m− 1

))
|b− h(x, θ)|
h3(x, θ)

‖∇θh(x, θ)‖1
{
b ≥ h(x, θ)

m− 1

}
dbdPx(x)

≤
∫ ∫ h̄x/(m−1)

hx/(m−1)

[
b

h3 +
1
h2

]
sup
θ∈Nθ

‖∇θh(x, θ)‖dbdPx(x)

+
∫ ∫ ∞

h̄x/(m−1)

[
b

h3 +
1
h2

]
exp

(
−1

h(x, θ)

(
b− h(x, θ)

m− 1

))
sup
θ∈Nθ

‖∇θh(x, θ)‖dbdPx(x)

= Ex

[(
h̄2
x − h2

x

2(m− 1)2h3 +
h̄x − hx

(m− 1)h2 +
h̄x

h2 +
mh̄2

x

(m− 1)h3

)
sup
θ∈Nθ

‖∇θh(x, θ)‖

]

∫ ∫
sup

θ̃,θ∈Nθ

||∇θf(b|x, θ̃)||2

f(b|x, θ̃)2
1(b ≥ g(x, θ))f(b|x, θ)dbdPx(x)

=
∫ ∫

sup
θ̃,θ∈Nθ

(b− h(x, θ̃))2

h4(x, θ̃)
‖∇θh(x, θ̃)‖2 1

h(x, θ̃)
exp

(
−
(
b

h̄x
− 1
m− 1

))
1
{
b ≥ h(x, θ)

m− 1

}
dbdPx(x)

≤
∫

sup
θ∈Nθ

‖∇θh(x, θ)‖2
∫ h̄x/(m−1)

hx/(m−1)

(
b2

h5 +
2b
h4 +

1
h3

)
dbdPx(x)

+
∫

sup
θ∈Nθ

‖∇θh(x, θ)‖2
∫ ∞
h̄x/(m−1)

(
b2

h5 +
2b
h4 +

1
h3

)
exp

(
−
(
b

h̄x
− 1
m− 1

))
dbdPx(x)

= Ex

[(
h̄3
x − h3

x

3(m− 1)3h5 +
h̄2
x − h2

x

(m− 1)2h4 +
h̄x − hx

(m− 1)h3

+
(2m2 − 2m+ 1)h̄3

x

(m− 1)2h5 +
2mh̄2

x

(m− 1)h4 +
h̄x

h3

)
sup
θ∈Nθ

‖∇θh(x, θ)‖2
]

Suppose δ ≤ 1
2 .∫ ∫

sup
θ̃,θ∈Nθ

‖∇θθf(b|x, θ̃)‖1+δ

f(b|x, θ̃)
1(b ≥ g(x, θ))f(b|x, θ)dydPx(x)

=
∫ ∫

sup
θ̃,θ∈Nθ

[
exp

(
−δ

h(x, θ̃)

(
b− h(x, θ̃)

m− 1

))
|b2 − 4bh(x, θ̃) + 2h2(x, θ̃)|1+δ

h4+5δ(x, θ̃)
‖∇θh(x, θ̃)‖2+2δ

+ exp

(
−δ

h(x, θ̃)

(
b− h(x, θ̃)

m− 1

))
|b− h(x, θ̃)|1+δ

h2+3δ(x, θ̃)
‖∇θθh(x, θ̃)‖1+δ

]
· 1
h(x, θ)

exp
(
−
(

b

h(x, θ)
− 1
m− 1

))
1
{
b ≥ h(x, θ)

m− 1

}
dbdPx(x)

24



≤ C

∫ ∫ h̄x/(m−1)

hx/(m−1)
exp

(
−δ
(

hx
h̄x(m− 1)

− 1
m− 1

))
·
[(

b2+2δ

h5+5δ
+

41+δb1+δ

h4+4δ
+

41+δb1+δ

h5+5δ
+

21+δ

h5+5δ
+

21+δ

h3+3δ

)
sup
θ∈Nθ

‖∇θh(x, θ̃)‖2+2δ

+
(
b1+δ

h3+3δ
+

1
h3+3δ

+
1

h2+2δ

)
sup
θ∈Nθ

‖∇θθh(x, θ̃)‖1+δ

]
dbdPx(x)

+C
∫ ∫ ∞

h̄x/(m−1)
exp

(
−(1 + δ)

(
b

h̄x
− 1
m− 1

))
[(

b3

h5+5δ
+

41+δb2

h4+4δ
+

41+δb2

h5+5δ
+

21+δ

h5+5δ
+

21+δ

h3+3δ

)
sup
θ∈Nθ

‖∇θh(x, θ̃)‖2+2δ

+
(

b2

h3+3δ
+

1
h3+3δ

+
1

h2+2δ

)
sup
θ∈Nθ

‖∇θθh(x, θ̃)‖1+δ

]
dbdPx(x)

≤ CEx

[
exp

(
−δ
(

hx
h̄x(m− 1)

− 1
m− 1

))[(
h̄3+2δ
x − h3+2δ

x

(3 + 2δ)(m− 1)3+2δh5+5δ

+
41+δ(h̄2+δ

x − h2+δ
x )

(2 + δ)(m− 1)2+δh5+5δ
(1 + h1+δ) +

21+δ(h̄x − hx)
h5+5δ

(1 + h2+2δ) sup
θ∈Nθ

‖∇θh(x, θ̃)‖2+2δ

)
+
(

(h̄2+δ
x − h2+δ

x )
(h̄2+δ
x − h2+δ

x )h3+3δ
+
h̄x − hx
h3+3δ

(1 + h1+δ) sup
θ∈Nθ

‖∇θθh(x, θ̃)‖1+δ

)]
+CEx

[{
h̄4
x

h5+5δ

(
1

(1 + δ)(m− 1)3
+

3
(1 + δ)2(m− 1)2

+
6

(1 + δ)3(m− 1)
+

6
(1 + δ)4

)
+

41+δh̄3
x(1 + h1+δ)
h5+5δ

(
1

(1 + δ)(m− 1)2
+

2
(1 + δ)2(m− 1)

+
2

(1 + δ)3

)
+

21+δh̄x(1 + h2+2δ)
(1 + δ)h5+5δ

}
sup
θ∈Nθ

‖∇θh(x, θ̃)‖2+2δ

+
{

h̄3
x

h3+3δ

(
1

(1 + δ)(m− 1)2
+

2
(1 + δ)2(m− 1)

+
2

(1 + δ)3

)
+
h̄x(1 + h1+δ)
(1 + δ)h3+3δ

}
sup
θ∈Nθ

‖∇θθh(x, θ̃)‖1+δ

]
Each of these moments is bounded by Conditions (c) and (e), so Assumption 3 follows.

Jθθij (θ) = Eθ

[
(b− h(x, θ))2

h4(x, θ)
∇θih(x, θ)∇θjh(x, θ)

]
=

∫
1

h5(x, θ)
∇θih(x, θ)∇θjh(x, θ)

∫ ∞
h(x,θ)/(m−1)

(b2 − 2bh(x, θ) + h2(x, θ))

· exp
(
−
(

b

h(x, θ)
− 1
m− 1

))
dbdPx(x)

=
m2 − 2m+ 2

(m− 1)2
Ex

[
1

h2(x, θ)
∇θih(x, θ)∇θjh(x, θ)

]
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is continuous and uniformly bounded on Nθ by Conditions (c), (d), and (e). Hence Assumption 4

is satisfied.

Assumption 5 is satisfied by Condition (e).

infθ,θ̃∈Nθ Pr
θ

(
b ≥ h(x, θ̃)

m− 1

)
≥ infθ∈Nθ Pr

θ

(
b ≥ h̄x

m− 1

)
= infθ∈Nθ

∫ ∫ ∞
h̄x/(m−1)

1
h(x, θ)

exp
(
−
(

b

h(x, θ)
− 1
m− 1

))
dbdPx(x)

≥ exp
(
−
(

h̄

h(m− 1)
− 1
m− 1

))
> 0

inf
θ∈Nθ

inf
‖w‖=1

Ex

[
f(g(x, θ)|x, θ) |∇θh(x, θ)′w|

m− 1

]
≥ 1

h̄(m− 1)
inf
θ∈Nθ

inf
‖w‖=1

Ex[|∇θh(x, θ)′w|] > 0

by Condition (f) and so Assumption 6 is satisfied.

C Proofs of Theorems

PROOF of Theorem 2: We prove the theorem for a given local parameter h. The extension to

any finite number of local parameters h ∈ H is straightforward. Let(
Rn
Dn

)
=

(
1√
n

∑
i∇γ ln f

(
yi|xi, γ + v0√

n
, θ + u0

n

)
∏
i 1{yi ≥ g

(
xi, θ + u

n

)
}

)
.

First, we will show that Rn|Dn = 1 ; R, Rn ; R, and Dn ; D. The joint limiting distribution

of (Rn, Dn) and asymptotic independence will follow.

Define α0
n = α+ ϕnh0, α1

n = α+ ϕnh, and

Ỹni =
1√
n
∇γ ln f

(
ỹi|x̃i, α0

n

)
,

where the joint density of (ỹi, x̃i) is given by

f̃(ỹ, x̃) =
f(ỹ|x̃, α0

n)1{ỹ ≥ g(x̃, θ0
n)}Px(x̃)

Prα0
n
(y ≥ g(x̃, θ1

n))
1{y ≥ g(x, θ1

n)}.
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In particular, (ỹ, x̃) is distributed as (y, x) conditional on y ≥ g(x̃, θ1
n). Likewise,

∑
i Ỹni is dis-

tributed as Rn|Dn = 1.

To show ∑
i

Ỹni ; N(0,−Ex[Eα[∇γγ ln f(y|x, α)]]),

we verify the conditions of the Lindeberg-Feller CLT:

(i) ‖V (Ỹni)‖ <∞

(ii)
∑

iE‖Ỹni‖21{‖Ỹni‖ > ε} −→ 0

(iii) E[Ỹni] = 0 and
∑

i V (Ỹni) = −Ex[Eα[∇γγ ln f(y|x, α)]].

E[Ỹni]

=
1√
n

∫ ∫
∇γ ln f

(
ỹ|x̃, α0

n

) f(ỹ|x̃, α0
n)1{ỹ ≥ max(g(x̃, θ0

n), g(x̃, θ1
n))}

Prα0
n
(y ≥ g(x, θ1

n))
Px(x̃)dỹdx̃

=
1√
n
∇γ
∫ ∫

f
(
ỹ|x̃, α0

n

) 1{ỹ ≥ max(g(x̃, θ0
n), g(x̃, θ1

n))}
Prα0

n
(y ≥ g(x, θ1

n))
Px(x̃)dỹdx̃

= 0 by Assumptions 2, 3, and 6.

‖V (Ỹni)‖ ≤
1
n

∫ ∫
‖∇γ ln f

(
ỹ|x̃, α0

n

)
∇γ ln f

(
ỹ|x̃, α0

n

)′ ‖ f
(
ỹ|x̃, α0

n

)
Prα0

n
(y ≥ g(x, θ1

n))

·1{ỹ ≥ max(g(x̃, θ0
n), g(x̃, θ1

n))}Px(x̃)dỹdx̃

≤ 1
n

∫ ∫ ‖∇γf
(
ỹ|x̃, α0

n

)
‖2

f (ỹ|x̃, α0
n) Prα0

n
(y ≥ g(x, θ1

n))
1{ỹ ≥ g(x̃, θ0

n)}Px(x̃)dỹdx̃

< ∞ by Assumptions 3 and 6.

Similarly, noting that Prα(y ≥ g(x, θ)) = 1, under Assumptions 2 and 3,
∑

i V (Ỹni) −→

Ex[Eα[∇γ ln f (y|x, α)∇γ ln f (y|x, α)′]] and
∑

iE‖Ỹni‖21{‖Ỹni‖ > ε} −→ 0.

By the Lindeberg-Feller CLT, ∑
i

Ỹni ; N(0, Iγ).

Similarly, for Yni = 1√
n
∇γ ln f

(
yi|xi, α0

n

)
, we can show

Rn =
∑
i

Yni ; N(0,−Ex[Eα[∇γγ ln f(y|x, α)]]),
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by Lindeberg-Feller CLT, as above.

Next consider the limiting distribution of Dn,

Dn =
∏
i

1{yi ≥ g
(
xi, θ

1
n

)
}; Bernoulli( lim

n−→∞
Eα0

n
[
∏
i

1{yi ≥ g
(
xi, θ

1
n

)
}]).

Now compute limn−→∞Eα0
n
[
∏
i 1{yi ≥ g

(
xi, θ

1
n

)
}].

Eα0
n
[1{yi ≥ g

(
xi, θ

1
n

)
}]

= 1− Ex[Fy|x,α0
n
(g(x, θ1

n)|x)]

= 1− Ex[1{g(x, θ1
n)− g(x, θ0

n) ≥ 0}(g(x, θ1
n)− g(x, θ0

n))f(g(x, θ +
ū

n
)|x, α0

n)].

By independence,

Eα0
n
[
∏
i

1{yi ≥ g
(
xi, θ

1
n

)
}]

−→ exp(−Ex[1{∇θg(x, θ)′(u− u0) ≥ 0}f(g(x, θ|x, α)∇θg(x, θ)′](u− u0))

by dominated convergence and Assumptions 2 and 5. So,

Dn ; Bernoulli(exp(−Ex[1{∇θg(x, θ)′(u− u0) ≥ 0}f(g(x, θ)|x, α)∇θg(x, θ)′](u− u0))).

Let S1
n =

∑
i Ỹni. Then S1

n is distributed as Rn|Dn = 1. Similarly, define S0
n as the random

variable that is distributed as Rn|Dn = 0. We have shown Rn ; R, S1
n ; R, and Dn ; D,

where the distributions of R and D are as given above. Now we can show that Rn and Dn are

asymptotically independent. Let m be any continuous, bounded real-valued function.

En[m(Rn)] = En[m(Rn)|Dn = 1]Prn(Dn = 1) + En[m(Rn)|Dn = 0]Prn(Dn = 0)

= En[m(S1
n)]Prn(Dn = 1) + En[m(S0

n)]Prn(Dn = 0).

Note that Prn(Dn = 0) −→ Pr(D = 0) (> 0), Prn(Dn = 1) −→ Pr(D = 1), En[m(Rn)] −→

E[m(R)], and En[m(S1
n)] −→ E[m(R)]. So,

En[m(S0
n)] −→ 1

Pr(D = 0)
(E[m(R)]− E[m(R)]Pr(D = 1)) = E[m(R)].

Hence, S0
n ; R.
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Now joint weak convergence of (Rn, Dn) follows. Let m be a continuous, bounded real-valued

function.

En[m(Rn, Dn)] = En[m(Rn, 1)|Dn = 1]Prn(Dn = 1)

+En[m(Rn, 0)|Dn = 0]Prn(Dn = 0)

= En[m(S1
n, 1)]Prn(Dn = 1) + En[m(S0

n, 0)]Prn(Dn = 0)

−→ E[m(R, 1)]Pr(D = 1) + E[m(R, 0)]Pr(D = 0)

where the last expression is equal to E[m(R,D)] when the law of (R,D) is defined to be the product

of the marginal laws for R and D. We have shown that (Rn, Dn) converges weakly and that it

converges to an independent joint limit distribution.

Next we consider terms in the expansion of the log of the likelihood ratio. It will be shown

that the likelihood ratio is a product of continuous functions in Rn and Dn, and the result of the

theorem will then follow by the weak convergence results just derived above.

Now for some mean values ū and v̄,

∑
i

[
ln f(yi|xi, γ +

v√
n
, θ +

u

n
)− ln f(yi|xi, γ +

v0√
n
, θ +

u0

n
)
]

=
∑
i

[
∇θ ln f

(
yi|xi, γ +

v0√
n
, θ +

u0

n

)′ (u− u0)
n

+∇γ ln f
(
yi|xi, γ +

v0√
n
, θ +

u0

n

)′ (v − v0)√
n

+
1
2

(u− u0)′

n
∇θθ ln f

(
yi|xi, γ +

v̄√
n
, θ +

ū

n

)
(u− u0)

n

+
1
2

(v − v0)′√
n
∇γθ ln f

(
yi|xi, γ +

v̄√
n
, θ +

ū

n

)
(u− u0)

n

+
1
2

(v − v0)′√
n
∇γγ ln f

(
yi|xi, γ +

v̄√
n
, θ +

ū

n

)
(v − v0)√

n

]
.

By Markov’s Inequality and Assumption 3, the terms 1
n2

∑
i∇θθ ln f

(
yi|xi, γ + v̄√

n
, θ + ū

n

)
,

1
n3/2

∑
i∇γθ ln f

(
yi|xi, γ + v̄√

n
, θ + ū

n

)
are op(1).

Next, note by Markov’s LLN,

1
n

∑
i

∇γγ ln f
(
yi|xi, γ +

v̄√
n
, θ +

ū

n

)
p−→ E [∇γγ ln f (y|x, α)]

and
1
n

∑
i

∇θ ln f
(
yi|xi, γ +

v0√
n
, θ +

u0

n

)
p−→ E [∇θ ln f (y|x, α)] .
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Under Assumptions 2 and 3, a version of the information matrix equality holds,

Iγ = Ex[Eα[∇γ ln f(y|x, α)∇γ ln f(y|x, α)′]] = −Ex[Eα[∇γγ ln f(y|x, α)]].

We have

∑
i

[
ln f(yi|xi, γ +

v√
n
, θ +

u

n
)− ln f(yi|xi, γ +

v0√
n
, θ +

u0

n
)
]

= Rn +
1
2

(v − v0)′E [∇γγ ln f (y|x, α)] (v − v0) + E [∇θ ln f (y|x, α)]′ (u− u0) + op(1).

Also, note that under Assumptions 2, 3, and 5,

E [∇θ ln f (y|x, α)] = E[f(g(x, θ)|x, α)∇θg(x, θ)].

Zn,α+ϕnh0(h) =
∏
i

f(yi|xi, θ + u
n , γ + v√

n
)1{yi ≥ g(xi, θ + u

n)}
f(yi|xi, θ + u0

n , γ + v0√
n

)1{yi ≥ g(xi, θ + u0
n )}

= exp
(
Rn +

1
2

(v − v0)′E [∇γγ ln f (y|x, α)] (v − v0)
)

· exp
(
E [∇θ ln f (y|x, α)]′ (u− u0) + op(1)

)
·Dn

h0
; exp

(
(v − v0)′N(−1

2
Iγ , Iγ)

)
· exp

(
E[f(g(x, θ)|x, α)∇θg(x, θ)′](u− u0)

)
D.

2

To prove Theorem 3, we will need a similar result on the convergence of the likelihood ratio

process.

Corollary 4 For every h0 and every finite I ⊂ H, uniformly in α0 ∈ N0,

(Zn,α0(h))h∈I
α0
; (Zα0(h))h∈I ,

where (Zα0(h))h∈I ∼
(

exp(v′T − 1
2
v′Iγv) exp

(
−E[f(g(x, θ0)|x, α0)∇θg(x, θ0)′]u

)
Dh

)
h∈I

and Iγ = Eα0 [∇γ ln f(y|x, α0)∇γ ln f(y|x, α0)′], and T and (Dh)h∈I are independent with T ∼

N(0, Iγ). (Dh)h∈I are jointly distributed Bernoulli random variables whose distribution is specified
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by the following marginal probabilities. Let {h1, . . . , hl} ⊂ I.

Pα0(Dh1 = 1, . . . , Dhl = 1)

= exp(E[1{max{∇θg(x, θ0)′u1, . . . ,∇θg(x, θ0)′ul} > 0}

·f(g(x, θ0)|x, α0) max{∇θg(x, θ0)′u1, . . . ,∇θg(x, θ0)′ul}]).

PROOF: The verification of the Lindeberg conditions in the proof of Theorem 2 also shows the

slightly stronger result that those conditions hold uniformly in α ∈ N0. By a uniform version of

the Lindeberg-Feller CLT given in Ibragimov and Hasminskii Theorem A.1.15,
∑

i Ỹni and
∑

i Yni

converge uniformly in distribution. Since the convergence of Eα0
n
[
∏
i 1{yi ≥ g

(
xi, θ

1
n

)
}] can also be

shown uniformly in α ∈ N0 under Assumptions 2 and 5, the result follows. 2

————————————————————-

PROOF of Theorem 3:

To establish the limiting distribution of the Bayes estimator, we generally follow the steps in

Ibragimov and Hasminskii’s (1981) proof of their Theorem 1.10.2. First, two properties of the

likelihood ratio process are established: bounding the tail behavior and bounding small variations.

Analogous properties would be taken as primitive assumptions in Ibragimov and Hasminskii; here

they are established in Lemmas 5 and 6 from more primitive assumptions (1 - 6). Using the bounds

on the likelihood ratio process tails, we can show that the integrals defining expected posterior loss

and its limit are well approximated by the corresponding integrals over a large bounded region.

Given the bounds on small variations in the likelihood ratio processes, the integrals on the bounded

regions are well approximated by the integrands evaluated at a large finite number of points in the

region. Given these results, the finite dimensional convergence of the likelihood ratio process (from

Corollary 4) translates into finite dimensional convergence of the expected posterior loss to its limit.

This convergence can be stengthened to weak convergence after verifying an asymptotic tightness

condition. The limiting distribution of the Bayes estimator will follow by an argmax theorem.

For the following lemmas, suppose Assumptions 1 - 6 hold. Let N0 be the closure of an η-ball

around α0 such that B(α0, 2η) ⊂ N .
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Lemma 5 There exists constants a, b, c > 0 such that

Eα0 |Z1/2
n,α0

(h2)− Z1/2
n,α0

(h1)|2 ≤ c(1 +Ru)a exp(bRv)(‖u2 − u1‖+ ‖v2 − v1‖2)

for all h1, h2 ∈ {h ∈ Un × Vn : ‖u‖ ≤ Ru, ‖v‖ ≤ Rv}, uniformly for α0 ∈ N0.

PROOF: Define

Gx = sup
{
g

(
x, θ0 +

u1

n
+ t · (u2 − u1)

n

)
: 0 ≤ t ≤ 1

}
,

Gx = inf
{
g

(
x, θ0 +

u1

n
+ t · (u2 − u1)

n

)
: 0 ≤ t ≤ 1

}
.

Eα0

∣∣∣Z1/2
n,α0

(h2)− Z1/2
n,α0

(h1)
∣∣∣2 = Eα0

[
p1/2(z|α0 + ϕnh2)

p1/2(z|α0)
− p1/2(z|α0 + ϕnh1)

p1/2(z|α0)

]2

=
∫
p(z|α0)>0

(
p1/2(z|α0 + ϕnh2)− p1/2(z|α0 + ϕnh1)

)2
dz

≤
∫ (

p1/2(z|α0 + ϕnh2)− p1/2(z|α0 + ϕnh1)
)2
dz

= 2
(

1−
[∫ ∫

f1/2(y|α0 + ϕnh2)1{y ≥ g(x, θ0 +
u2

n
)}

· f1/2(y|α0 + ϕnh1)1{y ≥ g(x, θ0 +
u1

n
)}Px(x)dydx

]n)
≤ 2n

(
1−

∫ ∫
f1/2(y|α0 + ϕnh2)1{y ≥ g(x, θ0 +

u2

n
)}

· f1/2(y|α0 + ϕnh1)1{y ≥ g(x, θ0 +
u1

n
)}Px(x)dydx

)
= n

(∫ ∫
|f1/2(y|α0 + ϕnh2)1{y ≥ g(x, θ0 +

u2

n
)}

− f1/2(y|α0 + ϕnh1)1{y ≥ g(x, θ0 +
u1

n
)}|2dyPx(x)dx

)
= n

∫ ∫ ∞
Gx

|f1/2(y|x, α0 + ϕnh2)− f1/2(y|x, α0 + ϕnh1)|2dyPx(x)dx

+n
∫ ∫ Gx

Gx

|f1/2(y|x, α0 + ϕnh2)1(y ≥ g(x, θ0 +
u2

n
))−

f1/2(y|x, α0 + ϕ2h1)1(y ≥ g(x, θ0 +
u1

n
))|2dyPx(x)dx
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≤ n

∫ ∫ ∞
g(x,θ0)

|f1/2(y|x, α0 + ϕnh2)− f1/2(y|x, α0 + ϕnh1)|2dyPx(x)dx

+n
∫ ∫ g(x,θ0)

min(Gx,g(x,θ))
|f1/2(y|x, α0 + ϕnh2)− f1/2(y|x, α0 + ϕnh1)|2dyPx(x)dx

+n
∫ ∫ Gx

Gx

|f1/2(y|x, α0 + ϕnh2)1(y ≥ g(x, θ0 +
u2

n
))−

f1/2(y|x, α0 + ϕ2h1)1(y ≥ g(x, θ0 +
u1

n
))|2dyPx(x)dx.

By Assumptions 1 and 2 and the fundamental theorem of calculus, we can write the first term

in the preceding display as

n

∫ ∫ ∞
g(x,θ0)

|
∫ 1

0
ϕn(h2 − h1)∇αf1/2(y|x, α0 + ϕn(h1 + t(h2 − h1)))dt|2Px(x)dx

≤ n

∫ 1

0

∫ ∫ ∞
g(x,θ0)

|ϕn(h2 − h1)′∇αf1/2(y|x, α0 + ϕ2(h1 + t(h2 − h1)))|2dyPx(x)dxdt

(by Jensen’s inequality)

=
1
n

k∑
i=1

k∑
j=1

(u2i − u1i)(u2j − u1j)
∫ 1

0

1
4
Jθθij (α0 + ϕn(h1 + t(h2 − h1)))dt

+
1√
n

k∑
i=1

d∑
j=1

2(u2i − u1i)(v2j − v1j)
∫ 1

0

1
4
Jγθij (α0 + ϕn(h1 + t(h2 − h1)))dt

+
d∑
i=1

d∑
j=1

(v2i − v1i)(v2j − v1j)
∫ 1

0

1
4
Jγγij (α0 + ϕn(h1 + t(h2 − h1)))dt

≤ A
‖u2 − u1‖2

n
max
i,j

sup
t∈[0,1]

Jθθij (α0 + ϕn(h1 + t(h2 − h1)))

+B
‖v2 − v1‖√

n
‖u2 − u1‖max

i,j
sup
t∈[0,1]

Jγθij (α0 + ϕn(h1 + t(h2 − h1)))

+C‖v2 − v1‖2 max
i,j

sup
t∈[0,1]

Jγγij (α0 + ϕn(h1 + t(h2 − h1))).

This term has the desired form by Assumption 4.

Now consider the third term and apply the inequality (
√
r −
√
s)2 ≤ |r − s| for r, s ≥ 0.
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∫ ∫ Gx

Gx

|f1/2(y|x, α0 + ϕnh2)1(y ≥ g(x, θ0 +
u2

n
))

−f1/2(y|x, α0 + ϕnh1)1(y ≥ g(x, θ0 +
u1

n
))|2dyPx(x)dx

≤
∫ ∫ Gx

Gx

|f(y|x, α0 + ϕnh2)1(y ≥ g(x, θ0 +
u2

n
))

−f(y|x, α0 + ϕnh1)1(y ≥ g(x, θ0 +
u1

n
))|dyPx(x)dx

≤
∫

(Gx −Gx)

[
sup

y∈[Gx,Gx]

f(y|x, α0 + ϕnh2) + sup
y∈[Gx,Gx]

f(y|x, α0 + ϕnh1)

]
Px(x)dx

≤ c
||u2 − u1||

n

where the last inequality follows by Assumption 2 and noting that the first derivative of g is

uniformly continuous on N̄ and hence bounded on N̄ .

The second term follows in exactly the same way, so we have verified the condition.

2

————————————————————-

Lemma 6 For all (u, v) and α0 ∈ N0,

Eα0Z
1/2
n,α0

(u, v) ≤ exp[−gn(‖u‖, ‖v‖)],

where gn is a sequence of functions from [0,∞)× [0,∞) into [0,∞) such that:

(a) for each n ≥ 1, gn is increasing to infinity in each of its arguments.

(b) For any Nu, Nv ≥ 0, we have

lim
n→∞,max{x,y}→∞

xNueNvy exp[−gn(x, y)] = 0.

PROOF: Note that
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Eα0Z
1/2
n,α0

(h) =
(∫ ∫

f(y|x, α0 + ϕnh)1/21{y ≥ g(x, θ0 +
u

n
)}f(y|x, α0)1/2

·1{y ≥ g(x, θ0)}dyPx(x)dx
)n

=
(

1− 1
2

∫ ∫ [
f(y|x, α0 + ϕnh)1/21{y ≥ g(x, θ0 +

u

n
)}

−f(y|x, α0)1/21{y ≥ g(x, θ0)}
]2
dyPx(x)dx

)n
≤ exp

(
− n

2

∫ ∫ [
f(y|x, α0 + ϕnh)1/21{y ≥ g(x, θ0 +

u

n
)}

−f(y|x, α0)1/21{y ≥ g(x, θ0)}
]2
dyPx(x)dx

)
,

where the last inequality follows by 1− ρ ≤ exp(−ρ).

Define

G
′
x = sup{g(x, θ0 + t

u

n
) : 0 ≤ t ≤ 1}

G′x = inf{g(x, θ0 + t
u

n
) : 0 ≤ t ≤ 1}.

Write ∫ ∫ [
f(y|x, α0 + ϕnh)1/21{y ≥ g(x, θ0 +

u

n
)}

−f(y|x, α0)1/21{y ≥ g(x, θ0)}
]2
dyPx(x)dx

=
∫ ∫ ∞

G
′
x

|f1/2(y|x, α0 + ϕnh)− f1/2(y|x, α0)|2dyPx(x)dx

+
∫ ∫ G

′
x

G′x

|f1/2(y|x, α0 + ϕnh)1{y ≥ g(x, θ0 + u/n)}

−f1/2(y|x, α0)1{y ≥ g(x, θ0)}|2dyPx(x)dx.

Cx = {y : min{g(x, θ0 + u/n), g(x, θ0)} ≤ y ≤ max{g(x, θ0 + u/n), g(x, θ0)}. Uniform conver-

gence of nE[|g(x, θ0+u/n)−g(x, θ0)| infCx min{f(y|x, α0+ϕnh), f(y|x, α0)}] to E [f(g(x, θ0)|x, α0)

·|∇θg(x, θ0)′u|] in u for ‖u‖ = 1 and α0 ∈ N0 follows by Assumptions 2 and 5, so that

lim
n−→∞

inf
α0∈N0

inf
‖u‖=1

E[n|g(x, θ0 + u/n)− g(x, θ0)| inf
Cx

min{f(y|x, α0 + ϕnh), f(y|x, α0)}]

= inf
α0∈N0

inf
‖u‖=1

Eα
[
f(g(x, θ0)|x, α0)|∇θg(x, θ0)′u|

]
.
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The last inequality below then follows by Assumption 6.∫ ∫ G
′
x

G′x

|f1/2(y|x, α0 + ϕnh)1(y ≥ g(x, θ0 + u/n))

−f1/2(y|x, α0)1(y ≥ g(x, θ0))|2dyPx(x)dx

≥ E[|g(x, θ0 + u/n)− g(x, θ0)| inf
Cx

min{f(y|x, α0 + ϕnh), f(y|x, α0)}]

≥ C
‖u‖
n
. (1)

Now consider the first term. As in the proof of Lemma 5,

n

∫ ∫ ∞
G
′
x

|f1/2(y|x, α0 + ϕnh)− f1/2(y|x, α0)|2dyPx(x)dx

=
1
n

k∑
i=1

k∑
j=1

uiuj

∫ 1

0

1
4
Jθθij (α0 + tϕnh)dt+

1√
n

k∑
i=1

d∑
j=1

2uivj
∫ 1

0

1
4
Jγθij (α0 + tϕnh)dt

+
d∑
i=1

d∑
j=1

vivj

∫ 1

0

1
4
Jγγij (α0 + tϕnh)dt

−→
d∑
i=1

d∑
j=1

vivj
1
4
Jγγij (α0) as n −→∞

where the convergence is uniform in α0 ∈ N0, since Jθθ, Jγθ, and Jγγ are continuous, hence

uniformly continuous, on N̄ .

Now by the Fatou’s Lemma and the Cauchy-Schwarz Inequality,∫ ∫ ∞
G
′
x

|f1/2(y|x, α0 + ϕnh)− f1/2(y|x, α0)|2dyPx(x)dx

=
∫ ∫ ∞

G
′
x

|(ϕnh)′∇αf1/2(y|x, α0)|2dyPx(x)dx+ o(||ϕnh||2)

≥
∫ ∫ ∞

g(x,θ0)
|(ϕnh)′∇αf1/2(y|x, α0)|2dyPx(x)dx+ o(||ϕnh||2)

−
∫ ∫ G

′
x

g(x,θ0)
|(ϕnh)′∇αf1/2(y|x, α0)|2dyPx(x)dx

=
1
n

 1
n

k∑
i=1

k∑
j=1

uiuj
1
4
Jθθij (α0) + 2

k∑
i=1

d∑
j=1

ui
vj√
n

1
4
Jγθij (α0) +

d∑
i=1

d∑
j=1

vivj
1
4
Jγγij (α0)


−
∫ ∫ G

′
x

g(x,θ0)
|(ϕnh)′∇αf1/2(y|x, α0)|2dyPx(x)dx+ o(||ϕnh||2)

≥ 1
n

[
−C ‖u‖

2
+B‖v‖2

]
.
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The last inequality following for sufficiently large n and some B > 0 (C the same constant as used

for second term) by Assumption 4 and noting

∫ ∫ G
′
x

g(x,θ0)
|(ϕnh)′∇αf1/2(y|x, α0)|2dyPx(x)dx+ o(||ϕnh||2)

≤ 1
n
‖h‖2

∫ ∫ G
′
x

g(x,θ0)
sup

y∈[g(x,θ0),G
′
x]

‖∇αf1/2(y|x, α0)‖2dyPx(x)dx

+o(||ϕnh||2)

≤ c · 1
n
‖h‖2

∫
|G′x − g(x, θ0)|Px(x)dx+ o(||ϕnh||2)

= o

(
1
n

)
.

We have shown that there exists a > 0 such that for large enough n,∫ ∫ [
f(y|x, α0 + ϕnh)1/21{y ≥ g(x, θ0 +

u

n
)}

−f(y|x, α0)1/21{y ≥ g(x, θ0)}
]2
dyPx(x)dx

≥ a

n
(‖u‖+ ‖v‖2)

suggesting

gn(x, y) =
(a

2

)
(‖x‖+ ‖y‖2).

2

We pause here to note that Theorem 3 could be restated in terms of higher-level assumptions

so that its results could be applicable directly to other models. In particular, to obtain the limiting

distribution of the Bayes estimator part of the conclusion, Assumptions 1 - 6 could be replaced by

the conclusions of Lemmas 5 and 6 and Corollary 4. If the conclusions of Lemmas 5′, 6′, and 2′

(stated below) are additionally assumed, then the efficiency result of Theorem 3 also follows. The

rest of the proof is modularized to depend only on these likelihood ratio process properties without

reference to Assumptions 1 - 6.

Before proving finite-dimensional convergence and asymptotic tightness of the expected pos-

terior loss, we need to establish a few useful intermediate results. The following lemmas include
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generalizations or extensions of Ibragimov and Hasminskii (1981) Lemma 1.5.1, Lemma 1.5.2, The-

orem 1.5.2, and Lemma A.1.22. For the following lemmas, suppose Assumptions 1 - 8 hold.

Lemma 7 For all δ and η small enough and α0 ∈ N0,

Pn,α0

(∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
Zn,α0(u, v)π(θ +

u

n
, γ +

v√
n

)dudv <
π(θ, γ)

4
δkηd

)
< 2A1/2(k1/4 + d1/2)(δ1/2 + η)

where k is the dimension of Θ and d is the dimension of Γ.

PROOF:

En,α0 |Zn,α0(u, v)− Zn,α0(0, 0)|

≤
[
En,α0 |Z1/2

n,α0
(u, v) + Z1/2

n,α0
(0, 0)|2En,α0 |Z1/2

n,α0
(u, v)− Z1/2

n,α0
(0, 0)|2

]1/2

≤ 2A1/2(‖u‖+ ‖v‖2)1/2 since En,α0Zn,α0(u, v) ≤ 1

≤ 2A1/2(‖u‖1/2 + ‖v‖).

Since π is continuous and π > 0, π(θ + u
n , γ + v√

n
) > π(θ,γ)

2 for large enough n, so∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
Zn,α0(u, v)π(θ0 +

u

n
, γ0 +

v√
n

)dudv

>
π(θ0, γ0)

2

∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
Zn,α0(u, v)dudv.

Note that Zn,α0(0, 0) = 1, so

Pn,α0

(∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
Zn,α0(u, v)π(θ0 +

u

n
, γ0 +

v√
n

)dudv <
π(θ0, γ0)

4
δkηd

)
≤ Pn,α0

(∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
Zn,α0(u, v)dudv <

1
2
δkηd

)
= Pn,α0

(∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
(Zn,α0(u, v)− Zn,α0(0, 0))dudv < −1

2
δkηd

)
≤ Pn,α0

(∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
|Zn,α0(u, v)− Zn,α0(0, 0)|dudv > 1

2
δkηd

)
≤ 2δ−kη−d2A1/2(k1/4 + d1/2)(δ1/2 + η)

∫ v0d+η

v0d

· · ·
∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
dudv

= 4A1/2(k1/4 + d1/2)(δ1/2 + η)
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where {0 ≤ u1 ≤ δ, . . . , 0 ≤ uk ≤ δ} ⊂ {‖u‖ ≤
√
kδ}. Hence,

En,α0 |Zn,α0(u, v)− Zn,α0(0, 0)| ≤ 2A1/2[(
√
kδ)1/2 + (

√
dη)1/2]

≤ 2A1/2(k1/4 + d1/2)(δ1/2 + η).

2

Define ΓuH = {u : H ≤ ‖u‖ < H + 1} ∩ Un, ΓvJ = {v : J ≤ ‖v‖ < J + 1} ∩ Vn,

In,α0,HJ =
∫

ΓuH×ΓvJ

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

Qn,α0,HJ =
In,α0,HJ∫

Un×Vn Zn,α0(u, v)π(θ0 + u
n , γ0 + v√

n
)dudv

.

Lemma 8 There exist constants B,C, b > 0 such that for α0 ∈ N0,

Pn,α0(In,α0,HJ > e−bgn(H,J)) ≤ B(1 +HB) exp(CJ)e−bgn(H,J)

En,α0 [Qn,α0,HJ ] ≤ B(1 +HB) exp(CJ)e−bgn(H,J).

PROOF: Partition ΓuH into Lk sets with each partitioning set having diameter less than AH/L

for some constant A. Similarly, partition ΓvJ into Md sets with each partitioning set having diam-

eter less than A′J/M for some constant A′. Then denote all possible Cartesian products of the

partitioning sets by ∆1, . . . ,∆LkMd . Define mes(∆) =
∫

∆ dudv. We can choose the partitions such

that maximes(∆i) ≤ A′′(H/L)k(J/M)d. Also, in each partitioning set ∆i, choose a point (ui, vi).

Sn,α0,HJ =
∑
i

∫
∆i

Zn,α0(ui, vi)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

≤
∑
i

Zn,α0(ui, vi)
∫

∆i

B(1 + ‖θ0 +
u

n
, γ0 +

v√
n
‖b)dudv

≤ B(1 + ‖θ0‖b
′′

+ ‖γ0‖b
′′

+ n−b
′′/2(Hb′′ + Jb

′′
))
∑
i

Zn,α0(ui, vi)mes(∆i).

(Recall cr-inequality: (H + k)b ≤ cr(Hb + kb).)
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For any real number a,

Pn,α0(Sn,α0,HJ >
1
2
e−agn(H,J))

≤ Pn,α0(B(1 + ‖θ0‖b + ‖γ0‖b + n−b/2(Hb + Jb))
∑
i

Zn,α0(ui, vi)mes(∆i) >
1
2
e−agn(H,J))

≤ Pn,α0(
[
max
i
Zn,α0(ui, vi)

]
B(1 + ‖θ0‖b + ‖γ0‖b + n−b/2(Hb + Jb))mes(ΓuH × ΓvJ)

>
1
2
e−agn(H,J))

≤
∑
i

Pn,α0(B(1 + ‖θ0‖b + ‖γ0‖b + n−b/2(Hb + Jb))Zn,α0(ui, vi)mes(ΓuH × ΓvJ)

>
1
2
e−agn(H,J))

≤
∑
i

√
2eagn(H,J)/2B(1 + ‖θ0‖b + ‖γ0‖b + n−b/2(Hb + Jb))mes(ΓuH × ΓvJ)1/2

·En,α0 [Z1/2
n,α0

(ui, vi)]

≤
∑
i

√
2e−(1−a/2)gn(H,J)B(1 + ‖θ0‖b + ‖γ0‖b + n−b/2(Hb + Jb))mes(ΓuH × ΓvJ)1/2

≤ LkMdB′(1 +Hb′)(1 + Jc)
√

2e−(1−a/2)gn(H,J)

≤ LkMdB′(1 +Hb′) exp(c′J)
√

2e−(1−a/2)gn(H,J)

since mes(ΓuH × ΓvJ) has a polynomial majorant in H and J .

En,α0 |Sn,α0,HJ − In,α0,HJ |

≤
∑
i

∫
∆i

π(θ0 +
u

n
, γ0 +

v√
n

)En,α0 |Zn,α0(u, v)− Zn,α0(ui, vi)|dudv

≤ B(1 + ‖θ0‖b + ‖γ0‖b + n−b/2(Hb + Jb))
∑
i

∫
∆i

En,α0 |Zn,α0(u, v)− Zn,α0(ui, vi)|dudv

≤ B(1 + ‖θ0‖b + ‖γ0‖b + n−b/2(Hb + Jb))

·
∑
i

∫
∆i

[(En,α0Zn,α0(u, v))1/2 + (En,α0Zn,α0(ui, vi))1/2]

·[En,α0 |Z1/2
n,α0

(u, v)− Z1/2
n,α0

(ui, vi)|2]1/2dudv

≤ B′′(1 +Hb′′) exp(c′′J)
∑
i

∫
∆i

(‖u− ui‖+ ‖v − vi‖2)1/2dudv

≤ B′(1 +Hb′) exp(c′J)[L−1/2 +M−1].
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Pn,α0(|Sn,α0,HJ − In,α0,HJ | >
1
2
e−agn(H,J))

≤ 2eagn(H,J)En,α0 |Sn,α0,HJ − In,α0,HJ |

≤ 2B(1 +Hb) exp(cJ)[L−1/2 +M−1]eagn(H,J).

Pn,α0(In,α0,HJ > e−agn(H,J))

≤ Pn,α0(Sn,α0,HJ >
1
2
e−agn(H,J)) + Pn,α0(|Sn,α0,HJ − In,α0,HJ | >

1
2
e−agn(H,J))

≤
√

2LkMdB′(1 +Hb′) exp(c′J)e−(1−a/2)gn(H,J)

+2B(1 +Hb) exp(cJ)[L−1/2 +M−1]eagn(H,J).

Let L = M2 and

M = exp
(

2
4k + 2d+ 2

(1 +
a

2
)gn(H,J)

)
.

Finally, choose a > 0 such that

a <
2

4k + 2d+ 1
.

The conclusion of the first statement of the lemma follows.

0 ≤ Qn,α0,HJ ≤ 1, so

En,α0Qn,α0,HJ

≤ En,α0 [1{
∫
Un×Vn

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv <
π(θ0, γ0)

4
δkηd}Qn,α0,HJ ]

+En,α0 [1{In,α0,HJ > e−agn(H,J)}Qn,α0,HJ ]

+En,α0 [1{In,α0,HJ ≤ e−agn(H,J)}

·1{
∫
Un×Vn

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv ≥ π(θ0, γ0)
4

δkηd}Qn,α0,HJ ]

≤ Pn,α0

(∫
Un×Vn

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv <
π(θ0, γ0)

4
δkηd

)
+Pn,α0

(
In,α0,HJ > e−agn(H,J)

)
+

4
π(θ0, γ0)δkηd

e−agn(H,J)
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≤ A(δ1/2 + η) +B(1 +Hb) exp(cJ)e−agn(H,J) +
4

π(θ0, γ0)δkηd
e−agn(H,J)

by Lemma 7 and the first part of this lemma (shown above)

≤ 3A
(

4
Aπ(θ0, γ0)

) 2
4k+2d+2

e−
2

4k+2d+2
gn(H,J) +B(1 +Hb) exp(cJ)e−agn(H,J)

≤ B′(1 +Hb′) exp(c′J)e−sgn(H,J),

where we set η = δ1/2 and

δ =
(

4
Aπ(θ0, γ0)

) 4
4k+2d+2

e−
4

4k+2d+2
agn(H,J).

2

Lemma 9 For any N , uniformly in α0 ∈ N0

lim
n,H−→∞

HNPn,α0(‖ϕ−1
n (α̃n − α0)‖ > H) = 0.

PROOF: Let

zn,α0(u, v) =
Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Un×Vn Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ
.

ϕ−1
n (α̃n − α0) minimizes

ψn,α0(s, t) =
∫
Un×Vn

l(s− u, t− v)zn,α0(u, v)dudv.

Pn,α0(‖ϕ−1
n (α̃n − α0)‖ > H) ≤ Pn,α0

(
inf

‖s,t‖>H
ψn,α0(s, t) ≤ ψn,α0(0, 0)

)
.

There exist numbers r0, r1, 0 < r0 < r1 such that for n large enough

l0 = sup{l(u, v) : (u, v) ∈ Un × Vn ∩ (‖u, v‖ ≤ r0)}

< l1 = inf{l(u, v) : (u, v) ∈ Un × Vn ∩ (‖u, v‖ > r1)}.
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Assume all integrals are taken over Un × Vn.

ψn,α0(0) =
∫
l(−(u, v))zn,α0(u, v)dudv

≤ l0

∫
‖u,v‖≤r0

zn,α0(u, v)dudv

+
∫
‖u,v‖>r0

l(−(u, v))zn,α0(u, v)dudv.

Take H large. Suppose H > 2r1 and (1
2H)ζ > r1. For ‖u, v‖ ≤

(
H
2

)ζ ,
l(−(u, v))− inf

‖ũ,ṽ‖>H
2

l(ũ, ṽ) ≤ 0. (2)

If ‖s, t‖ > H, ‖u, v‖ ≤ 1
2H, then

‖(s− u, t− v)‖ > 1
2
H > r1 and inf

‖u,v‖≥H
2

l(u, v) ≥ l1,

inf
‖s,t‖>H

ψn,α0(s, t) ≥ inf
‖s,t‖>H

∫
‖u,v‖<H

2

l(s− u, t− v)zn,α0(u, v)dudv

≥ inf
‖s,t‖>H

∫
‖u,v‖<H

2

[
inf

‖(s−ũ,t−ṽ)‖>H
2
>r1

l(s− ũ, t− ṽ)

]
zn,α0(u, v)dudv

= l1

∫
‖u,v‖≤r0

zn,α0(u, v)dudv

+
∫
r0<‖u,v‖<(H2 )ζ

[
inf

‖ũ,ṽ‖>H
2

l(ũ, ṽ)

]
zn,α0(u, v)dudv.

Also note that after the second inequality we could conclude

inf
‖s,t‖>H

ψn,α0(s, t) ≥ l1
∫
‖u,v‖<H

2

zn,α0(u, v)dudv.

So,

ψn,α0(0)− inf
‖s,t‖>H

ψn,α0(s, t)

≤ −(l1 − l0)
∫
‖u,v‖≤r0

zn,α0(u, v)dudv

+
∫
‖u,v‖>(H2 )ζ

l(−(u, v))zn,α0(u, v)dudv

by equation (2).
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l has a polynomial majorant, so l(−(u, v)) ≤ B′(1 + ‖u, v‖b′) ≤ B(1 + ‖u‖b)(1 + ‖v‖c).∫
‖u,v‖>(H2 )ζ

l(−(u, v))zn,α0(u, v)dudv

≤
∫
‖u‖> 1

2(H2 )ζ
l(−(u, v))zn,α0(u, v)dudv

+
∫
‖v‖> 1

2(H2 )ζ
l(−(u, v))zn,α0(u, v)dudv.

Let R = 1
2

(
H
2

)ζ .
En,α0

∫
‖u‖>R

l(−(u, v))zn,α0(u, v)dudv

=
∞∑
j=0

∞∑
m=0

En,α0

∫
ΓuR+j×Γvm

l(−(u, v))zn,α0(u, v)dudv

≤
∞∑
j=0

∞∑
m=0

B(1 + (R+ j)b)(1 +mc)En,α0Qn,α0,R+j,m by Assumption 7

≤
∞∑
j=0

∞∑
m=0

B′(R+ j)b
′
exp(c′m)e−agn(R+j,m) by Lemma 8

= e−agn(R,0)/2
∞∑
j=0

∞∑
m=0

B′[(R+ j)
2
a

(b′+2) exp(
2
a

(c′ + 1)m)e−gn(R+j,m)

·(R+ j)−
4
a exp(−2

a
m)]

a
2

≤ e−agn(R,0)/2B′′
∞∑
j=0

∞∑
m=0

(R+ j)−2 exp(−m)

≤ Be−agn(R,0)/2. (3)

Similarly,

En,α0

∫
‖v‖>R

l(−(u, v))zn,α0(u, v)dudv

≤
∞∑
j=0

∞∑
m=0

B(1 + (R+m)b)(1 + jc)En,α0Qn,α0,j,R+m

...

≤ B′e−agn(0,R)/2.
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So,

En,α0

∫
‖u,v‖>(H2 )ζ

l(−(u, v))zn,α0(u, v)dudv

≤ Be−a
′gn(R,0) +B′e−a

′gn(0,R)

≤ BR−2N/ζ

≤ B′H−2N .

Now,

Pn,α0

(∫
‖u,v‖>(H2 )ζ

l(−(u, v))zn,α0(u, v)dudv > H−N

)
≤ B′H−2NHN = B′H−N .

Below we will need Pn,α0(
∫
Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv > HN/2) < CH−N/4, which

follows from ∫
Zn,α0(u, v)π(θ0 +

u

n
, γ0 +

v√
n

)dudv

=
∞∑
j=1

∞∑
q=1

∫
Γuj−1×Γvq−1

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

≤
∞∑
j=1

∞∑
q=1

sup
(u,v)∈Γuj−1×Γvq−1

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)mesjq,

where we define mesjq = mes(Γuj−1×Γvq−1). Since the parameter space is assumed finite dimensional

mesjq has a polynomial majorant in j and q.

Also, the prior has a polynomial majorant, so

Pn,α0

(∫
Zn,α0(u, v)π(θ0 +

u

n
, γ0 +

v√
n

)dudv > HN/2

)

≤ Pn,α0

 ∞∑
j=1

∞∑
q=1

sup
(u,v)∈Γuj−1×Γvq−1

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)mesjq > HN/2


≤ 1− Pn,α0

(
∩∞j=1 ∩∞q=1 sup

(u,v)∈Γuj−1×Γvq−1

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)mesjq

≤ HN/2

C ′jMqM
}

)
for M > 1
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≤ 1− Pn,α0

(
∩∞j=1 ∩∞q=1 sup

(u,v)∈Γuj−1×Γvq−1

Zn,α0(u, v) ≤ HN/2

C ′′jM ′qM ′
}

)

= Pn,α0

(
∪∞j=1 ∪∞q=1 sup

(u,v)∈Γuj−1×Γvq−1

Zn,α0(u, v) >
HN/2

C ′′jM ′qM ′
}

)

≤
∞∑
j=1

∞∑
q=1

Pn,α0

(
sup

(u,v)∈Γuj−1×Γvq−1

Zn,α0(u, v) >
HN/2

C ′′jM ′qM ′

)

≤
∞∑
j=1

∞∑
q=1

C ′′jM
′/2qM

′/2

HN/4
En,α0

(
sup

(u,v)∈Γuj−1×Γvq−1

Z1/2
n,α0

(u, v)

)

≤
∞∑
j=1

∞∑
q=1

C ′′jM
′/2qM

′/2

HN/4
e−gn(j−1,q−1)

≤ C ′′H−N/4
∞∑
j=1

∞∑
q=1

j2+M ′/2q2+M ′/2e−gn(j−1,q−1)j−2q−2

= C ′′H−N/4

e−gn(0,0) +
∞∑
q=2

q2+M ′/2e−gn(0,q−1)q−2

+
∞∑
j=2

j2+M ′/2e−gn(j−1,0)j−2 +
∞∑
j=2

∞∑
q=2

j2+M ′/2q2+M ′/2e−gn(j−1,q−1)j−2q−2


≤ C ′′H−N/4

e−gn(0,0) + 22+M ′/2
∞∑
q=2

(q − 1)2+M ′/2e−gn(0,q−1)q−2

+22+M ′/2
∞∑
j=2

(j − 1)2+M ′/2e−gn(j−1,0)j−2

+24+M ′
∞∑
j=2

∞∑
q=2

(j − 1)2+M ′/2(q − 1)2+M ′/2e−gn(j−1,q−1)j−2q−2


≤ C ′′′H−N/4

+
∞∑
q=2

q−2 +
∞∑
j=2

j−2 +
∞∑
j=2

∞∑
q=2

j−2q−2


≤ CH−N/4.

Pn,α0

(
(l1 − l0)

∫
‖u,v‖≤r0

zn,α0(u, v)dudv < H−N

)

≤ Pn,α0

(∫
‖u,v‖≤r0 Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv

HN/2
≤ 1

(l1 − l0)HN

)

+Pn,α0(
∫
Zn,α0(u, v)π(θ0 +

u

n
, γ0 +

v√
n

)dudv > HN/2)
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≤ Pn,α0

(∫
‖u,v‖≤r0

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv ≤ 1
(l1 − l0)HN/2

)
+ CH−N/4

= Pn,α0

(∫
‖u,v‖≤r0

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

≤ π(θ0, γ0)
4

1[(
(l1−l0)π(θ0,γ0)

4

) 1
k+d

H
N

2(k+d)

]k+d

+ CH−N/4

≤ Pn,α0

∫ [
(l1−l0)π(θ0,γ0)

4
HN/2]

− 1
k+d

0
· · ·
∫ [

(l1−l0)π(θ0,γ0)
4

HN/2]
− 1
k+d

0
Zn,α0(u, v)

·π(θ0 +
u

n
, γ0 +

v√
n

)dudv

≤ π(θ0, γ0)
4

1[(
(l1−l0)π(θ0,γ0)

4

) 1
k+d

H
N

2(k+d)

]k+d

+ CH−N/4

≤ 2A1/2(k1/4 + d1/2)

[(
(l1 − l0)π(θ0, γ0)

4
HN/2

)− 1
2(k+d)

+
(

(l1 − l0)π(θ0, γ0)
4

HN/2

)− 2
2(k+d)

]
+ CH−N/4

≤ C ′H−tN

where t ∈ (0, 1) and does not depend on N .

Finally,

Pn,α0(‖ϕ−1
n (α̃n − α0)‖ > H)

≤ Pn,α0( inf
‖s,t‖>H

ψn,α0(s, t) < ψn,α0(0, 0))

≤ Pn,α0((l0 − l1)
∫
‖u,v‖≤r0

zn,α0(u, v)dudv +
∫
‖u,v‖>(H2 )ζ

l(−(u, v))zn,α0(u, v)dudv > 0)

≤ Pn,α0((l1 − l0)
∫
‖u,v‖≤r0

zn,α0(u, v)dudv < H−N )

+Pn,α0(
∫
‖u,v‖>(H2 )ζ

l(−(u, v))zn,α0(u, v)dudv > H−N )

≤ B′′(H−N +H−tN ).

2
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Lemma 10 The distributions of the integrals
∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)dudv and∫

‖u,v‖≤M Zn,α0(u, v)dudv converge uniformly for α0 ∈ N0 to the distributions of the integrals
∫
‖u,v‖≤M l(s−

u, t− v)Zα0(u, v)dudv and
∫
‖u,v‖≤M Zα0(u, v)dudv.

PROOF: Note that supn,u,v En,α0Zn,α0(u, v) ≤ 1 <∞, so

sup
n
En,α0

∫
‖u,v‖≤M

|l(s− u, t− v)||Zn,α0(u, v)|dudv <∞.

Also,

En,α0 [Z1/2
n,α0

(u1, v1) + Z1/2
n,α0

(u2, v2)]2

≤ 2 sup
u,v

En,α0Zn,α0(u, v) + 2[En,α0Zn,α0(u1, v1)]1/2[En,α0Zn,α0(u2, v2)]1/2

≤ 4 sup
u,v

En,α0Zn,α0(u, v)

and

En,α0 |Zn,α0(u1, v1)− Zn,α0(u2, v2)|

≤ 2[En,α0 |Z1/2
n,α0

(u1, v1)− Z1/2
n,α0

(u2, v2)|2]1/2[sup
u,v

En,α0Zn,α0(u, v)]1/2.

For fixed M , ‖u1, v1‖ ≤M , and ‖u2, v2‖ ≤M ,

sup
n
En,α0 |Zn,α0(u1, v1)− Zn,α0(u2, v2)|

≤ B′(‖u1 − u2‖1/2 + ‖v1 − v2‖).

By marginal convergence of Zn,α0 the above conditions also hold for Zα0 . Partition <k+d into

cubes with edges of length δ parallel to the coordinate axes. Let ∆j be the intersection of the jth

cube with the set {(u, v) : ‖u, v‖ ≤M}. Choose a point (uj , vj) in each ∆j . Consider characteristic

functions,
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∣∣∣∣∣En,α0 exp

[
iλ

∫
‖u,v‖≤M

l(s− u, t− v)Zn,α0(u, v)dudv

]

− Eα exp

[
iλ

∫
‖u,v‖≤M

l(s− u, t− v)Zα0(u, v)dudv

]∣∣∣∣∣
≤

∣∣∣∣∣∣En,α0 exp

iλ∑
j

Zn,α0(uj , vj)
∫

∆j

l(s− u, t− v)dudv


− Eα exp

iλ∑
j

Zα0(uj , vj)
∫

∆j

l(s− u, t− v)dudv

∣∣∣∣∣∣
+

∣∣∣∣∣∣En,α0 exp

iλ∑
j

Zn,α0(uj , vj)
∫

∆j

l(s− u, t− v)dudv


− En,α0 exp

[
iλ

∫
‖u,v‖≤M

l(s− u, t− v)Zn,α0(u, v)dudv

]∣∣∣∣∣
+

∣∣∣∣∣∣Eα exp

iλ∑
j

Zα0(uj , vj)
∫

∆j

l(s− u, t− v)dudv


− Eα exp

[
iλ

∫
‖u,v‖≤M

l(s− u, t− v)Zα0(u, v)dudv

]∣∣∣∣∣ .
The first differenced term on the righthand side approaches zero by (uniform) marginal conver-

gence of Zn,α0 in Corollary 4. For the second differenced term, note∣∣∣∣∣∣En,α0 exp

iλ∑
j

Zn,α0(uj , vj)
∫

∆j

l(s− u, t− v)dudv


− En,α0 exp

[
iλ

∫
‖u,v‖≤M

l(s− u, t− v)Zn,α0(u, v)dudv

]∣∣∣∣∣
≤ |λ|

∑
j

∫
∆j

l(s− u, t− v)En,α0 |Zn,α0(u, v)− Zn,α0(uj , vj)|dudv

Noting |eitc − eitb| ≤ |t|
∫ c

b
|eity|dy ≤ |t||c− b|

≤ B′|λ| sup
‖u,v‖≤M

|l(s− u, t− v)|((kδ)1/2 + (dδ))mes{(u, v) : ‖u, v‖ ≤M}

−→ 0,

as δ −→ 0.

Similarly, the third differenced term converges to zero. 2
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Lemma 11 For any {h1, . . . , hm} ⊂ <k+d, (ψn,α0(h1), . . . , ψn,α0(hm))

; (ψα0(h1), . . . , ψα0(hm)) uniformly for α0 ∈ N0.

PROOF:

From lemma 9, Pn,α0(‖ϕ−1
n (α̃n − α0)‖ > M) −→ 0, uniformly for n large enough as M −→∞.

Let L ≥M ,

ψn,α0(s, t)−

∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

=

∫
‖u,v‖>M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ
(4)

−

∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ
(5)

·

∫
‖u,v‖>L Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ
. (6)

Term (4),

En,α0

∣∣∣∣∣
∫
‖u,v‖>M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

∣∣∣∣∣
= En,α0

∣∣∣∣∣
∫
‖u,v‖>M

l(s− u, t− v)zn,α0(u, v)dudv

∣∣∣∣∣
≤ En,α0

∣∣∣∣∣
∫
‖u‖>M/2

l(s− u, t− v)zn,α0(u, v)dudv

∣∣∣∣∣
+En,α0

∣∣∣∣∣
∫
‖v‖>M/2

l(s− u, t− v)zn,α0(u, v)dudv

∣∣∣∣∣
≤ Be−agn(M/2,0)/2 +B′e−agn(0,M/2)/2,

as in (3) in the proof of lemma 9 (for fixed s, t).

Now, consider term (5),∫
‖u,v‖≤M Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ
≤ 1,
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so [∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

]

≤ sup
‖u,v‖≤M

l(s− u, t− v)

[∫
‖u,v‖≤M Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

]
≤ B(1 +M b).

Now consider terms (5) and (6).

En,α0

[∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

·

∫
‖u,v‖>L Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

]

≤ B(1 +M b)En,α0

[∫
‖u,v‖>L Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

]

≤ B(1 +M b)En,α0

[∫
‖u‖>L/2 Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

]

+B(1 +M b)En,α0

[∫
‖v‖>L/2 Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

]
≤ Be−agn(M/2,0)/2 +B′e−agn(0,M/2)/2

again as in (3) in the proof of lemma 9.

It follows by Markov’s Inequality that uniformly for α0 ∈ N0

ψn,α0(s, t)−

∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ
p−→ 0,

as M −→∞ uniformly for large enough n.

The prior π is positive and continuous at α0, so

π(θ0 +
ũ

n
, γ0 +

ṽ√
n

) −→ π(θ0, γ0)

uniformly on ‖u, v‖ ≤M and α0 ∈ N0 as n −→∞. So,
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∣∣∣∣∣∣
m∑
j=1

ξj

∫
‖u,v‖≤M

l(sj − u, tj − v)Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

+ξ0

∫
‖u,v‖≤M

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

−
m∑
j=1

ξj

∫
‖u,v‖≤M

l(sj − u, tj − v)Zn,α0(u, v)π(θ0, γ0)dudv

+ ξ0

∫
‖u,v‖≤M

Zn,α0(u, v)π(θ0, γ0)dudv

∣∣∣∣∣
≤ sup

‖u,v‖≤M
|π(θ0 +

u

n
, γ0 +

v√
n

)− π(θ0, γ0)|

·

∣∣∣∣∣∣
m∑
j=1

ξj

∫
‖u,v‖≤M

l(sj − u, tj − v)Zn,α0(u, v)dudv

+ξ0

∫
‖u,v‖≤M

Zn,α0(u, v)dudv

∣∣∣∣∣
p−→ 0,

since the second term is Op(1).

From Lemma 10, we have that for arbitrary ξ0, ξ1, . . . , ξm,

m∑
j=1

ξj

∫
‖u,v‖≤M

l(sj − u, tj − v)Zn,α0(u, v)π(θ0, γ0)dudv

+ξ0

∫
‖u,v‖≤M

Zn,α0(u, v)π(θ0, γ0)dudv

;

m∑
j=1

ξj

∫
‖u,v‖≤M

l(sj − u, tj − v)Zα0(u, v)π(θ0, γ0)dudv

+ξ0

∫
‖u,v‖≤M

Zα0(u, v)π(θ0, γ0)dudv

So using the Cramer-Wold device it follows that(∫
‖u,v‖≤M

l(s1 − u, t1 − v)Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

, . . . ,

∫
‖u,v‖≤M

l(sm − u, tm − v)Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv,∫
‖u,v‖≤M

Zn,α0(u, v)π(θ0 +
u

n
, γ0 +

v√
n

)dudv

)
.
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;

(∫
‖u,v‖≤M

l(s1 − u, t1 − v)Zα0(u, v)π(θ0, γ0)dudv

, . . . ,

∫
‖u,v‖≤M

l(sm − u, tm − v)Zα0(u, v)π(θ0, γ0)dudv,∫
‖u,v‖≤M

Zα0(u, v)π(θ0, γ0)dudv

)
.

It follows that for M,L <∞, the marginal distributions of∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

converge uniformly in α0 ∈ N0 to the marginal distributions of∫
‖u,v‖≤M l(s− u, t− v)Zα0(u, v)dudv∫

‖ũ,ṽ‖≤L Zα0(ũ, ṽ)dũdṽ
.

Thus, ∫
ΓuH×ΓvJ

Zn,α0(u, v)π(θ0 + u
n , γ0 + v√

n
)dudv∫

‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ
n , γ0 + ṽ√

n
)dũdṽ

converges uniformly for α0 ∈ N0 to the distribution of∫
ΓuH×ΓvJ

Zα0(u, v)dudv∫
‖ũ,ṽ‖≤L Zα0(ũ, ṽ)dũdṽ

,

and so for L > H + 1,

Eα

∫
ΓuH×ΓvJ

Zα0(u, v)dudv∫
Zα0(ũ, ṽ)dũdṽ

≤ lim
n−→∞

En,α0

∫
ΓuH×ΓvJ

Zn,α0(u, v)π(θ0 + u
n , γ0 + v√

n
)dudv∫

‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ
n , γ0 + ṽ√

n
)dũdṽ

≤ B(1 +HB) exp(CJ)e−bgn(H,J).

As a result, we can use the proof method above to show that

ψα0(s, t)−

∫
‖u,v‖≤M l(s− u, t− v)Zα0(u, v)dudv∫

‖ũ,ṽ‖≤L Zα0(ũ, ṽ)dũdṽ
p−→ 0

as M −→∞, just as we showed that

ψn,α0(s, t)−

∫
‖u,v‖≤M l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ
p−→ 0
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as M −→∞ uniformly for large enough n.

The conclusion of the lemma follows.

2

Lemma 12 For every ε, η > 0, there exists δ > 0 such that:

lim sup
n−→∞

sup
α0∈N0

Pn,α0

(
sup

‖s1−s2,t1−t2‖≤δ,‖s1,t1‖≤M,‖s2,t2‖≤M
|ψn,α0(s1, t1)− ψn,α0(s2, t2)| ≥ ε

)
≤ η.

PROOF:

Note that the part of the proof of Lemma 11 that shows ψn,α0(s, t) can be approximated

by a ratio of integrals on a compact space can be straightforwardly extended from fixed s, t to

{(s, t) : ‖s, t‖ ≤M}. Uniformly in α0 ∈ N0

sup
‖s,t‖≤M

∣∣∣∣∣ψn,α0(s, t)−

∫
‖u,v‖≤N l(s− u, t− v)Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

∣∣∣∣∣ p−→ 0

as N −→∞ uniformly for large enough n.

Hence, it suffices to show that for every ε, η > 0, there exists δ > 0 such that:

lim sup
n−→∞

sup
α0∈N0

Pn,α0

(
sup

‖s1−s2,t1−t2‖≤δ,‖s1,t1‖≤M,‖s2,t2‖≤M∣∣∣∣∣
[∫
‖u,v‖≤N [l(s1 − u, t1 − v)− l(s2 − u, t2 − v)]Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

]∣∣∣∣∣
≥ ε) ≤ η.

En,α0

[
sup

‖s1−s2,t1−t2‖≤δ,‖s1,t1‖≤M,‖s2,t2‖≤M∣∣∣∣∣
∫
‖u,v‖≤N [l(s1 − u, t1 − v)− l(s2 − u, t2 − v)]Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

∣∣∣∣∣
]

≤ sup
‖s1−s2,t1−t2‖≤δ,‖s1,t1‖≤M,‖s2,t2‖≤M,‖u,v‖≤N

[l(s1 − u, t1 − v)− l(s2 − u, t2 − v)]

·En,α0

∣∣∣∣∣
∫
‖u,v‖≤N Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

∣∣∣∣∣ .
By Assumption 7, l(s−u, t−v) is uniformly continuous on ‖s, t‖ ≤M, ‖u, v‖ ≤ N , so we can choose

δ small enough to make sup‖s1−s2,t1−t2‖≤δ,‖s1,t1‖≤M,‖s2,t2‖≤M,‖u,v‖≤N [l(s1−u, t1−v)−l(s2−u, t2−v)]
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as small as desired. Since

sup
α0∈N0

En,α0

∣∣∣∣∣
∫
‖u,v‖≤N Zn,α0(u, v)π(θ0 + u

n , γ0 + v√
n

)dudv∫
‖ũ,ṽ‖≤L Zn,α0(ũ, ṽ)π(θ0 + ũ

n , γ0 + ṽ√
n

)dũdṽ

∣∣∣∣∣ <∞,
we can use Markov’s Inequality to arrive at the conclusion of the lemma.

2

Lemmas 11 and 12 establish weak convergence of the stochastic process ψn,α0 to ψα0 . They are

also sufficient to ensure that almost all sample paths of ψα0 are continuous. Then by Lemmas 9

and 9′ (below), we can apply an argmax theorem, such as Theorem 3.2.2 in Van der Vaart and

Wellner (1996), to establish the limiting distribution of the Bayes estimator.

Now we turn to showing asymptotic efficiency. Define the limiting risk function

L(α) = limn−→∞En,α[l(ϕ−1
n (α̃n − α))].

We want to show that the convergence to this limiting risk function is uniform in α ∈ N0. Note that

conditions given in the first part of this proof are sufficient for uniform convergence in distribution

of the Bayes estimator for α0 ∈ N0. Also, using Assumption 7 and Lemma 9,

En,α0 [l(ϕ−1
n (α̃n − α0))1{‖ϕ−1

n (α̃n − α0)‖ > H}]

≤
∞∑
j=H

B(1 + (j + 1)b)Pr(j < ‖ϕ−1
n (α̃n − α0)‖ ≤ j + 1)

≤
∞∑
j=H

B′jbPr(‖ϕ−1
n (α̃n − α0)‖ > j)

=
∞∑
j=H

B′jb+2Pr(‖ϕ−1
n (α̃n − α0)‖ > j)j−2

≤ C
∞∑
j=H

j−2. (7)

By choosing H large, we can make this bound as small as desired. Let M = B(1 + Hb) and

lM (h) = min{M, l(h)}.
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sup
α0∈N0

|En,α0 l(ϕ
−1
n (α̃n − α0))− Eα0 l(τα0)|

≤ sup
α0∈N0

|En,α0 l(ϕ
−1
n (α̃n − α0))− En,α0 lM (ϕ−1

n (α̃n − α0))|

+ sup
α0∈N0

|En,α0 lM (ϕ−1
n (α̃n − α0))− Eα0 lM (τα0)|+ sup

α0∈N0

|Eα0 lM (τα0)− Eα0 l(τα0)|.

Since |En,α0 l(ϕ
−1
n (α̃n−α0)) −En,α0 lM (ϕ−1

n (α̃n−α0))| ≤ En,α0 [l(ϕ−1
n (α̃n−α0)) 1{‖ϕ−1

n (α̃n−α0)‖ >

H}], equation (7) is sufficient to make the first term as small as desired by choosing H and n

sufficiently large, and a similar argument can be made for the third term using Lemma 9′. Since

lM is countinuous and bounded, the second term can be made as small as desired by the uniform

convergence in distribution of the Bayes estimator.

Next we establish weak convergence of τα′ to τα0 when α′ −→ α0. To show the weak convergence,

we follow a similar argument to the one used to establish the limiting distribution of the Bayes

estimator. Corresponding lemmas are denoted with a prime. This result is used to show continuity

of the limiting risk function, which will lead to the desired efficiency result.

Lemma 5′ There exists a, b, c > 0 such that

Eα|Z1/2
α0

(h2)− Z1/2
α0

(h1)|2 ≤ c(1 +Ru)a exp(bRv)(‖u2 − u1‖+ ‖v2 − v1‖2)

for all h1, h2 ∈ {h : ‖u‖ ≤ Ru, ‖v‖ ≤ Rv} and any α0.

PROOF:

Eα|Z1/2
α0

(h2)− Z1/2
α0

(h1)|2

≤ E|Z1/2
α0

(h2)− Z1/2
n,α0

(h2)|2 + E|Z1/2
n,α0

(h2)− Z1/2
n,α0

(h1)|2

+E|Z1/2
n,α0

(h1)− Z1/2
α0

(h1)|2

+2[E|Z1/2
α0

(h2)− Z1/2
n,α0

(h2)|2E|Z1/2
n,α0

(h2)− Z1/2
n,α0

(h1)|2]1/2

+2[E|Z1/2
α0

(h2)− Z1/2
n,α0

(h2)|2E|Z1/2
n,α0

(h1)− Z1/2
α0

(h1)|2]1/2

+2[E|Z1/2
n,α0

(h2)− Z1/2
n,α0

(h1)|2E|Z1/2
n,α0

(h1)− Z1/2
α0

(h1)|2]1/2

≤ c(1 +Ru)a exp(bRv)(‖u2 − u1‖+ ‖v2 − v1‖2) + ε.

56



The last inequality follows by

En,α0 |Z1/2
n,α0

(h2)− Z1/2
n,α0

(h1)|2 ≤ c(1 +Ru)a exp(bRv)(‖u2 − u1‖+ ‖v2 − v1‖2),

and the finite dimensional convergence in Corollary 4 which implies that we can choose n large

enough so that the remaining terms are less than ε > 0. Since this holds for any ε > 0 the

conclusion of the lemma follows. 2

Lemma 6′ For all (u, v) and α0 ∈ N ,

Eα0Z
1/2
α0

(u, v) ≤ exp[−G(‖u‖, ‖v‖)],

where G is a sequence of functions from [0,∞)× [0,∞) into [0,∞) such that:

(a) G is increasing to infinity in each of its arguments.

(b) For any Nu, Nv ≥ 0, we have

lim
max{x,y}→∞

xNueNvy exp[−G(x, y)] = 0.

PROOF:

Eα0Z
1/2
α0

(u, v) = exp
(
− 1

8
v′Iγv −

1
2
Eα0

[
f(g(x, θ0)|x, α0)|∇θg(x, θ0)′u|

] )
.

By Assumptions 4 and 6, there exists a > 0, so that we can set

G(x, y) = a(‖x‖+ ‖y‖2)

to satisfy the conclusion of the lemma.

2

Lemma 2′ The finite dimensional distributions of Zα′(h) converge to those of Zα0(h) as α′ −→ α0.

PROOF: Let Tα′ , (Dα′,h1 , . . . , Dα′,hm), Tα0 , and (Dα0,h1 , . . . , Dα0,hm) be the normal and joint

Bernoulli random variables corresponding to (Zn,α′(h1), . . . , Zn,α′(hm)) and (Zn,α0(h1), . . . , Zn,α0(hm))
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as given in Corollary 4. The conclusion of the lemma will follow by the continuous mapping theorem

and noting that for {j1, . . . , jl} ⊂ {h1, . . . , hm}, Pα′(Dα′,j1 = 1, . . . , Dα′,jl = 1) −→ Pα0(Dα0,j1 =

1, . . . , Dα0,jl = 1) and var(Tα′) −→ var(Tα0) as α′ −→ α0. The variances converge by Assump-

tion 3. The probabilities converge by the continuity of

1{max{∇θg(x, θ′)′uj1 , . . . ,∇θg(x, θ′)′ujl} > 0}f(g(x, θ′)|x, α′)

max{∇θg(x, θ′)′uj1 , . . . ,∇θg(x, θ′)′ujl}])

with respect to α′ at α0 and Assumption 5. 2

Lemma 7′ For all δ and η small enough,

Pα

(∫ η

0
· · ·
∫ η

0

∫ δ

0
· · ·
∫ δ

0
Zα(u, v)dudv <

1
2
δkηd

)
< 2A1/2(k1/4 + d1/2)(δ1/2 + η).

PROOF: By the same argument as the proof of Lemma 7. 2

Define

Iα,HJ =
∫

ΓuH×ΓvJ

Zα(u, v)dudv

Qα,HJ =
Iα,HJ∫

Zn,α(u, v)dudv
.

Lemma 8′ There exist constants B,C, b > 0 such that

Pα(Iα,HJ > e−bG(H,J)) ≤ B(1 +HB) exp(CJ)e−bG(H,J)

Eα[Qα,HJ ] ≤ B(1 +HB) exp(CJ)e−bG(H,J).

PROOF: By the same argument as the proof of Lemma 8. 2
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Lemma 9′ Suppose ϕ−1
n (α̃n − α) ; τα. For any N

lim
H−→∞

HNPα(‖τα‖ > H) = 0.

PROOF: The result follows by the Portmanteau Theorem, Lemma 9, and noting that the H-

bounds in the proof of Lemma 9 are uniform in n for large enough n. 2

Lemma 10′ The distributions of the integrals
∫
‖u,v‖≤M l(s− u, t− v)Zα′(u, v)dudv and∫

‖u,v‖≤M Zα′(u, v)dudv converge to the distributions of the integrals
∫
‖u,v‖≤M l(s−u, t−v)Zα0(u, v)dudv

and
∫
‖u,v‖≤M Zα0(u, v)dudv as α′ −→ α0.

PROOF: By the same argument as the proof of Lemma 10. 2

Lemma 11′ (ψα′(s1, t1), . . . , ψα′(sm, tm))
p−→ (ψα0(s1, t1), . . . , ψα0(sm, tm)) as α′ −→ α0.

PROOF:

In the proof of Lemma 11, we have already shown that

ψα′(s, t)−

∫
‖u,v‖≤M l(s− u, t− v)Zα′(u, v)dudv∫

‖ũ,ṽ‖≤L Zα′(ũ, ṽ)dũdṽ
p−→ 0

as M −→∞, and similarly for ψα0(s, t).

From Lemma 10′, we have that for arbitrary ξ0, ξ1, . . . , ξm,

m∑
j=1

ξj

∫
‖u,v‖≤M

l(sj − u, tj − v)Zα′(u, v)dudv

+ξ0

∫
‖u,v‖≤M

Zα′(u, v)dudv

;

m∑
j=1

ξj

∫
‖u,v‖≤M

l(sj − u, tj − v)Zα0(u, v)dudv

+ξ0

∫
‖u,v‖≤M

Zα0(u, v)dudv.
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So using the Cramer-Wold device it follows that(∫
‖u,v‖≤M

l(s1 − u, t1 − v)Zα′(u, v)dudv

, . . . ,

∫
‖u,v‖≤M

l(sm − u, tm − v)Zα′(u, v)dudv,∫
‖u,v‖≤M

Zα′(u, v)dudv

)

;

(∫
‖u,v‖≤M

l(s1 − u, t1 − v)Zα0(u, v)dudv

, . . . ,

∫
‖u,v‖≤M

l(sm − u, tm − v)Zα0(u, v)dudv,∫
‖u,v‖≤M

Zα0(u, v)dudv

)
.

So for M,L <∞, the marginal distributions of∫
‖u,v‖≤M l(s− u, t− v)Zα′(u, v)dudv∫

‖ũ,ṽ‖≤L Zα′(ũ, ṽ)dũdṽ

converge to the marginal distributions of∫
‖u,v‖≤M l(s− u, t− v)Zα0(u, v)dudv∫

‖ũ,ṽ‖≤L Zα0(ũ, ṽ)dũdṽ
.

The conclusion of the lemma follows. 2

Lemma 12′ For every ε, η > 0, there exists δ > 0 such that:

lim sup
α′−→α0

Pα′

(
sup

‖s1−s2,t1−t2‖≤δ,‖s1,t1‖≤M,‖s2,t2‖≤M
|ψα′(s1, t1)− ψα′(s2, t2)| ≥ ε

)
≤ η

PROOF: By the same argument as in the proof of Lemma 12 applied to ψα′ rather than ψn,α0 .

2

Since ϕ−1
n (α̃n − α) ; τα, L(α) = Eα[l(τα)]. Moreover, for α′ −→ α0, τα′ ; τα0 . Thus for

α0 ∈ N0, L is continuous. Also, using an argument similar to (7), L is bounded on α0 ∈ N0.

Continuity and boundedness of the risk function can be used to establish the following relation

for any nonempty open subset A of N0.

lim inf
n−→∞

sup
α∈N0

En,α[l(ϕ−1
n (α̂n − α)] ≥ sup

α∈A
L(α)
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by Theorem 1.9.1 in Ibragimov and Hasminskii (1981). Recalling the uniform convergence to the

limiting risk function shown earlier, asymptotic efficiency of α̃n on N0 follows. Hence for any point

α0 in N0, α̃n is asymptotically efficient. 2
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